Efficiency of the Adapted Automatic Row Hoe for Weed Control in Organic Soybean

Main Article Content

Emerson Fey
Neumárcio Vilanova da Costa
Silvio Douglas Ferreira
Vitor Gustavo Kuhn
Anderson Marcel Gibbert
Hiago Canavessi

Abstract

The objective of the present study was to evaluate the row hoe model CHOPSTAR®, the mechanical control of weeds in between the rows of soybean implanted in organic direct sowing system, associated with the camera-guided system. Two experiments were carried, being that in the first experiment an experimental design with sub-subdivided plots with four replicates. The plots corresponded to two soybean varieties (‘Embrapa BRS 284’ and ‘Coodetec CD 216’), the subplots corresponded to the sowing densities of 329.2 and 574.6 thousand plants ha-1; and the sub-subplots corresponded to four managements of weeds: one mechanized hoe (2 days after sowing – DAS), two mechanized hoes (22 and 47 DAS), one control manually hoed and other control without hoeing. In the second experiment a randomized block design in subdivided plots with three replicates was used. The plots corresponded to two soybean varieties (‘BRS 284’ and ‘DF 2353’), the subplots constituted of different times when the hoes were made, being: one (14 DAS); two (7 and 21 DAS; two (14 and 28 DAS); three (7, 14 and 28 DAS); besides one control manually hoed up to 28 DAS. In the first experiment it was observed that the automatized hoe was efficient in controlling the weeds and it was necessary only one mechanized hoe (22 DAS) for the ‘BRS 284’ independent of the sowing density, while for the ‘CD 216’ the number of mechanized hoes depended on the sowing density. In the second experiment, it was necessary only one mechanized hoe (14 DAS) to avoid production losses in the varieties ‘BRS 284’ and ‘DF 2353’. The automatized hoe is an alternative to control weeds in areas of organic soybean in direct sowing system, however, damages to the crop can occur depending on the sowing density, mainly in the late management of the mechanized hoe.

Keywords:
Agricultural sustainability, Glycine max (L.) Merrill, alternative control, mechanized hoe.

Article Details

How to Cite
Fey, E., Costa, N. V. da, Ferreira, S. D., Kuhn, V. G., Gibbert, A. M., & Canavessi, H. (2020). Efficiency of the Adapted Automatic Row Hoe for Weed Control in Organic Soybean. Journal of Experimental Agriculture International, 42(2), 25-36. https://doi.org/10.9734/jeai/2020/v42i230467
Section
Original Research Article

References

Dedecker JJ, Masiunas JB, Davis AS, Flint CG. Weed management practice selection among midwest U.S. organic growers. Weed Sci. 2014;62(3):520-31.
Available:https://doi.org/10.1614/WS-D-13-00138.1

Chen G, Kolb L, Leslie A, Hooks CRR. Using reduced tillage and cover crop residue to manage weeds in organic vegetable production. Weed Technol. 2017;31(4):557-73.
Available:https://doi.org/10.1017/wet.2017.24

Brown B, Gallandt ER. A systems comparison of contrasting organic weed management strategies. Weed Sci. 2018;66(1):109-20.
Available:https://doi.org/10.1017/wsc.2017.34

Harker KN, O’Donovan JT. Recent weed control, weed management and integrated weed management. Weed Technol. 2013;27(1):1–11.
Available:https://doi.org/10.1614/WT-D-12-00109.1

Harker KN. Slowing weed evolution with integrated weed management. Can. J. Plant Sci. 2013;93(5):759-64.
Available:https://doi.org/10.4141/cjps2013-049

Baraibar B, Hunter MC, Schipanski ME, Hamilton A, Mortensen DA. Weed suppression in cover crop monocultures and mixtures. Weed Sci. 2018;66(1):121-33.
Available:https://doi.org/10.1017/wsc.2017.59

Bernstein ER, Stoltenberg DE, Posner JL, Hedtcke JL. Weed community dynamics and suppression in tilled and no-tillage transitional organic winter rye–soybean systems. Weed Sci. 2014;62(1):125-37.
Available:https://doi.org/10.1614/WS-D-13-00090.1

Teasdale JR, Mohler CL. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000;48(3):385-92.
Available:https://doi.org/10.1614/0043-1745(2000)048[0385:TQRBWE]2.0.CO;2

Hartwig NL, Ammon HU. Cover crops and living mulches. Weed Sci. 2002;50(6):688-99.
Available:https://doi.org/10.1614/00431745(2002)050[0688:AIACCA]2.0.CO;2

Mirsky SB, Ryan MR, Teasdale JR, Curran WS, Reberg-Horton CS, Spargo JT, et al. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the Eastern United States. Weed Technol. 2013;27(1):193-203.
Available:https://doi.org/10.1614/WT-D-12-00078.1

Theisen G, Vidal RA, Fleck NG. Redução da infestação de Brachiaria plantaginea em soja pela cobertura do solo com palha de aveia-preta. Pesqui. Agropecu. Bras. 2000;35(4):753-56. Brazilian Portuguese
Available:http://dx.doi.org/10.1590/S0100-204X2000000400011

Rich AM, Renner KA. Row spacing and seeding rate effects on eastern black nightshade (Solanum ptycanthum) and soybean. Weed Technol. 2007;21(1):124-30.
Available:https://doi.org/10.1614/WT-04-220.1

Harder DB, Sprague CL, Renner KA. Effect of soybean row width and population on weeds, crop yield and economic return. Weed Technol. 2007;21(3):744-52.
Available:https://doi.org/10.1614/WT-06-122.1

Place GT, Reberg-Horton SC, Burton MG. Effects of preplant and postplant rotary hoe use on weed control, soybean pod position and soybean yield. Weed Sci. 2009;57(3):290-95.
Available:https://doi.org/10.1614/WS-08-132.1

DeWerff RP, Conley SP, Colquhoun JB, Davis VM. Can soybean seeding rate be used as an integrated component of herbicide resistance management? Weed Sci. 2014;62(4):625-36.
Available:https://doi.org/10.1614/WS-D-14-00047.1

Fennimore SA, Slaughter DC, Siemens MC, Leon RG, Saber MN. Technology for automation of weed control in specialty crops. Weed Technol. 2016;30(4):823-37.
Available:https://doi.org/10.1614/WT-D-16-00070.1

Ascard J, Fogelberg F. Mechanical in-row weed control in transplanted and direct-sown bulb onions. Biological Agric. and Hortic. 2008;25(3):235-51.
Available:https://doi.org/10.1080/01448765.2008.9755051

Fennimore SA, Smith RF, Tourte L, LeStrange M, Rachuy JS. Evaluation and economics of a rotating cultivator in bok choy, celery, lettuce and radicchio. Weed Technol. 2014;28(1):176-88.
Available:https://doi.org/10.1614/WT-D-13-00051.1

Fennimore SA, Tourte L, Rachuy JS, Smith RF, George C. Evaluation and economics of a machine-vision guided cultivation program in broccoli and lettuce. Weed Technol. 2010;24(1):33-38.
Available:https://doi.org/10.1614/WT-09-022.1

Garford. Robocrop inrow weeder.
[Accessed 23 January 2019]
Available:https://garford.com/wp-content/uploads/2018/07/Robocrop-InRow-.pdf

Einböck. Row-guard.
[Accessed 23 January 2019]
Available:https://www.einboeck.at/uploads/downloads/191105_Hackger%C3%A4te_EN_24.pdf

Slaughter DC, Giles DK, Downey D. Autonomous robotic weed control systems: A review. Comput Electron Agric. 2008;61(1):63-78.
Available:https://doi.org/10.1016/j.compag.2007.05.008

Pérez-Ruíz M, Slaughter DC, Fathallah F, Gliever CJ, Miller B. Mechanical weed management based on an accurate odometry techniques; 2012.
[Accessed 29 January 2019]
Available:https://www.researchgate.net/profile/Manuel_Perez-Ruiz/publication/266008037_Mechanical_Weed_Management_
Based_on_an_Accurate_Odometry_Techniques/links/54b7b3500cf2e68eb2804008.pdf

Cordill C, Grift TE. Design and testing of an intra-row mechanical weeding machine for corn. Biosyst Eng. 2011;110(3):247-52.
Available:https://doi.org/10.1016/j.biosystemseng.2011.07.007

Place GT, Reberg-Horton SC, Dunphy JE, Smith AN. Seeding rate effects on weed control and yield for organic soybean production. Weed Technol. 2009;23(4): 497-502.
Available:https://doi.org/10.1614/WT-08-134.1

Val BHP, Júnior JAF, Bizari EH, Di Mauro AO, Trevisioli SHU. Diversidade genética de genótipos de soja por meio de caracteres agromorfológicos. Cienc. Tecnol. 2014;6:72-83. Brazilian Portuguese

Balbinot Junior AA, Procópio SO, Debiasi H, Franchini JC, Panison F. Semeadura cruzada em cultivares de soja com tipo de crescimento determinado. Semin Cienc Agrar. 2015;36(3):1215-26. Brazilian Portuguese
Available:http://dx.doi.org/10.5433/1679-0359.2015v36n3p1215

Bianchi MA, Fleck NG, Lamego FP, Agostinetto D. Papéis do arranjo de plantas e do cultivar de soja no resultado da interferência com plantas competidoras. Planta Daninha. 2010;28:979-91. Brazilian Portuguese
Available:http://dx.doi.org/10.1590/S0100-83582010000500006

Perini L, Fonseca Júnior NS, Destro D, Prete CEC. Componentes da produção em cultivares de soja com crescimento determinado e indeterminado. Semin Cienc Agrar. 2012;33(1):2531-44. Brazilian Portuguese
Available:https://doi.org/10.5433/1679-0359.2012v33Supl1p2531

Eyherabide JJ, Cendoya MG. Critical periods of weed control in soybean for full field and in-furrow interference. Weed Sci. 2002;50(2):162-66.
Available:https://doi.org/10.1614/0043-1745(2002)050[0162:CPOWCI]2.0.CO;2

Hager AG, Wax LM, Stoller EW, Bollero GA. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 2001;50(5):607-10.
Available:https://doi.org/10.1614/0043-1745(2002)050[0607:CWARII]2.0.CO;2

Silva AAP, Oliveira Neto AM, Guerra N, Helvig EO, Maciel CDG. Interference periods among weeds and soybean RR™ crops in the Western Center area of the Brazilian State of Paraná. Planta Daninha. 2015;33(4):707-16.
Available:http://dx.doi.org/10.1590/S0100-83582015000400009

Vitorino HS, Silva Junior AC, Gonçalves CG, Martins D. Interference of a weed community in the soybean crop in functions of sowing spacing. Cienc Agron. 2017;48(4):605-13.
Available:http://dx.doi.org/10.5935/1806-6690.20170070

Lati RN, Siemens MC, Rachuy JS, Fennimore SA. Intrarow weed removal in broccoli and transplanted lettuce with an intelligent cultivator. Weed Technol. 2016;30(3):655-63.
Available:https://doi.org/10.1614/WT-D-15-00179.1

Pérez-Ruíz M, Slaughter DC, Fathallah FA, Gliever CJ, Miller BJ. Co-robotic intra-row weed control system. Biosyst Eng. 2014;126:45-55.
Available:https://doi.org/10.1016/j.biosystemseng.2014.07.009