Performance of Drought-tolerant Varieties of Maize (Zea mays L.) under Water Deficit Stress Condition in the North Region of Cameroon

Main Article Content

Paul Sounou Alioum
Jacques Djida Housseini
Tontsa Noelle Hortense Mafouasson


Aims: The present study aimed to assess the performance of three drought-tolerant maize genotypes (DTSTRSYNY-2 (V1), WHITE DTSTRSYN (V2) and TZL COMP.4DTF2 (V3)) developed by IITA under water deficit stress conditions.

Place and Duration of Study: Experiment was carried out at Sanguere-Paul in the Soudano-Sahelian agro-ecological zone, North region, Cameroon from September to December 2019.

Methodology: Experimental design employed was the Randomized Complete Block Design (RCBD) of 5 treatments corresponding to different maize varieties in 2 replicates. The drought-sensitive CMS 9015 (V4) and the drought-tolerant EVDT99 QPM W (V5) maize varieties performed by IRAD was used as negative and positive controls, respectively. For each maize variety, growth and production parameters were recorded alongside the experiment and grain yield was      calculated.

Results: Results showed that the three drought-tolerant maize genotypes and the positive control maize variety assessed significantly exhibited a good performance under water stress condition regarding the growth and production traits registered compared to the negative control. Concerning growth parameters, the drought-tolerant maize varieties V1, V2 and V3 presented short anthesis-silking interval (1-1.5 day), good plant aspect, low number of dried leaves above ear (8-15 leaves) and less dead plants (1.25 -1.50 plant)compared to the controls. For V1, V2 and V3 drought-tolerant maize varieties, high yields of 3.24, 3.58 and 3.73 ton/ha, respectively, were obtained compared to the controls(1.13 ton/ha for the negative control V4 and 2.27 ton/ha for the positive control V5).

Conclusion: Thus, the three drought-tolerant maize varieties showed good performance in the Soudano-Sahelian agro-ecological zone of Cameroon and should be adopted by farmers to increase and improve the maize production in the country, even under water deficit conditions.

Maize, drought-tolerant, performance, growth, production, Soudano-Sahelian agro-ecological zone.

Article Details

How to Cite
Alioum, P. S., Housseini, J. D., & Mafouasson, T. N. H. (2020). Performance of Drought-tolerant Varieties of Maize (Zea mays L.) under Water Deficit Stress Condition in the North Region of Cameroon. Journal of Experimental Agriculture International, 42(3), 64-73.
Original Research Article


Dar IA, Sofi PA, Dar ZA, Kamaluddin, Lone AA. Screening of maize genotypes for drought tolerance related trait variability. Int J Curr Microbiol App Sci. 2018;7(4): 668-682.

FAOSTAT. Food and Agriculture Organization of the United Nations Statistics; 2015.
(Accessed October 9, 2019)

Ntsama ESM, Kamgnia DB. Determinants of the adoption of improved varieties of maize in Cameroon: Case of CMS 8704 (MPRA Paper No. 37783). Munich Personal RePEc Archive; 2008.

FAO. FAOSTAT database collections. Rome, Italy: Food and Agriculture Organization of the United Nations; 2016.
Available: /fr/

Rezende WS, Beyene Y, Mugo S, Ndou E, Gowda M, Sserumaga JP, Asea G, Ngolinda I, JumboM, Oikeh SO, Olsen M, Borém A, Cruz CD, Prasanna BM. Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa. Crop J. 2019;8(5):107-118.

Nkamleu GB. The failure of the growth of agricultural productivity in francophone Africa. Econ Rural. 2004;279(1):53-65.

Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna BM. Adapting maize production to climate change in Sub‐Saharan Africa. Food Security. 2013;5(3):345-360.

Takam FGM. Adoption and impact of improved maize varieties on maize yield in Cameroon: A macro‐impact evaluation. Econ Bull. 2017;37(4):2496-2504.

Amigues JP, Debaeke P, Itier B, Lemaire G, Seguin B, Tardieu F, Thomas A. Sécheresse et agriculture. Réduire la vulnérabilité de l'agriculture à un risque accru de manque d'eau. Expertise scientifique collective, INRA (Paris); 2006.

FAO. Sécheresse et Agriculture, prévoir, planifier, préparer: Comment éviter que la sécheresse entraine la famine. Une célébration de la journée mondiale pour la lutte contre la désertification et la sécheresse; 2017.

Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Meisel B, Sehabiague P, Vivek BS, Oikeh S, Alvarado G, Machida L, Olsen M, Prasanna BM, Bänziger M. Improving maize grain yield under drought stress and non-stress environments in Sub-Saharan Africa using marker assisted recurrent selection. Crop Sci. 2016;56:344-353.

Monneveux P, Sanchez C, Beck D, Edmeades GO. Drought tolerance improvement in tropical maize source populations. Evidence of progress. Crop Sci. 2006;46:180-191.

Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR. Improving drought tolerance in maize: A view from industry. Field Crops Res. 2004;90:19-34.

Ngugi K, Cheserek J, Muchira C, Chemining’Wa G. Anthesis to silking interval usefulness in developing drought tolerant maize.J Renew Agri. 2013;1(5): 84-90.

Wossen T, Abdoulaye T, Alene A, Feleke S, Menkir A, Manyong V. Measuring the impacts of adaptation strategies to drought stress the case of drought tolerant maize varieties, J. Environ. Manag. 2017;203: 106-113.

Cooper M, Gho C, Leafgren R, Tang T, Messina C. Breeding drought-tolerant maize hybrids for the U.S. Corn Belt: Discovery to product. J Exp Bot. 2014;65 (21):6191-6204.

Edge M, Oikeh SO, Kyetere D, Mugo S, Mashingaidze K. Water efficient maize for Africa: A public-private partnership intechnology transfer to smallholder farmers in sub-Saharan Africa, In: Kalaitzandonakes N, Carayannis E, Grigoroudis E, Rozakis S. (Eds.), From Agriscience to Agribusiness: Theories, Policies and Practices in Technology Transfer and Commercialization, Springer, Cham, Switzerland. 2018;391-412.

Banziger M, Edmeades GO, Beck D, Bellon M. Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. Mexico, D.F.: International Maize and Wheat Improvement Centre (CIMMYT); 2000.

Beyene Y, Gowda M, Suresh LM, Mugo S, Olsen M, Oikeh SO, Juma C, Tarekegne A, Prasanna BM. Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica. 2017;213:1-13.

Cairns JE, Prasanna BM. Developing and deploying climate- resilient maize varieties in the developing world. Curr Opin Plant Biol. 2018;45:1-5.

Katengeza SP, Holden ST, Lunduka RW. Adoption of drought tolerant maize varieties under rainfall stress in Malawi. J Agri Econ. 2018;70(1):198-214.

Meseka S, Menkir A, Bossey B, Mengesha W. Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agron. 2018; 8(274):1-12.

Edmeades GO, Bolaños J, Elings A, Ribaut JM, Bänziger M, Westgate ME. The role and regulation of the anthesis-silking interval in maize. In Westgate ME and Boote K (eds) Physiology and modeling kernel set in maize. CSSA, Madison. 2000; 43-73.

Fisher M, Abate T, Lunduka RW, Asnake W, Alemayehu Y, Madulu RB. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Clim Change. 2015;133 (2):283-299.

Bellague D, M'Hammedi-Bouzina M, Abdelguerfi A. Measuring the performance of perennial alfalfa with drought tolerance indices. Chilean J Agri Res. 2016;76(3):1-12.

Sezener V, Basal H, Peynircioglu C, Gurbuz T, Kizilkaya K. Screening of cotton cultivars for drought tolerance under field conditions. Turk J Field Crop. 2015;20(2): 223-232.

Anjum SA, Wang LC, Farooq M, Khan L, Xue LL. Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. J Agron Crop Sci. 2011; 197:296-301.

Fleury A. Les problèmes techniques du semis. Association française pour l’étude du sol; 2010.

Badu-Apraku B, Oyekunle M. Genetic analysis of grain yield and other traits of extra-early yellow maize inbreds and hybrid performance under contrasting environments Field. Crop Res. 2012;129: 99-110.

Coulibaly M. Stability for grain yield performance of maize inbreds and their hybrids in varying drought stress environments in Mali. Ph.D thesis, University of Ghana; 2013.

Richards R. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agri Water Manag. 2006; 80:197-211.

Magorokosho C, Pixley KV, Tongoona P. Selection for drought tolerance in two tropical maize populations. Afr Crop Sci J. 2003;11(3):151-161.

Effendi R, Priyanto SB, Aqil M, Azrai M. Drought adaptation level of maize genotypes based on leaf rolling, temperature, relative moisture content, and grain yield parameters. IOP Conf Ser: Earth Environ Sci. 2019;270:1-11.

Mangisoni JH, Katengeza S, Langyintuo A, Rovere R, Mwangi W. Characterization of maize producing households in Balaka and Mangochi Districts in Malawi. Country Report–Malawi. Nairobi: CIMMYT; 2011.

Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008;147(2):446-455.

Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whitsel JE, Sammons B, Silady RA, Anstrom D, Sharp RE, Patharkar OR, Clay D, Coffn M, Nemeth MA, Leibman ME, Luethy M, Lawson M. Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant, Cell Environ. 2015;38(9): 1866-1880.