Influence of Micronutrient Managment on Growth and Yield Attributes in Pigeonpea [Cajanus cajan (L.) CV. PRG176] in Kalahandi District of Odisha

Main Article Content

H. N. Malik
U. Naik
U. Sahoo
A. Panda
A. Phonglosa
R. Bhattacharya
F. H. Rahman


Pigeon pea (Cajanus cajan (L.) is grown worldwide for its protein-rich seed. However, low availability of soil boron adversely affects the seed yield of pigeon pea. The present study was therefore conducted to assess the Influence of micronutrients mainly boron on crop growth and yield of pigeon pea (Cajanus cajan (L.)  cv. PRG176. Field experiment was conducted at farmer’s field, Pipalpada and Boria of district Kalahandi of Odisha state. Boron as boric acid at 200, 300 and 400 ppm was given as foliar spray with 100% recommended dose of fertilizer (RDF) with ZnSO4 @ 25 kg/ha and plant height, growth rates and  yield attributes were estimated. The results revealed that combined application of 100% RDF, ZnSO4 (25 kg/ha) and Boron (300 ppm) recorded the highest plant height (324.84 cm) at 180 days after sowing (DAS), highest dry matter accumulation (759.30g/m2) at 180 DAS and best crop growth rate (6.65 g/m2/day) during 90-180 DAS and highest relative growth rate (0.052 g/m2/day) during 30-90 DAS. Similarly these combination of treatment resulted in maximum number of branches plant-1 (10.30), pods branch-1 (19.67) pods plant-1 (202.33), seeds pod-1 (3.0) and grain yield (1702.64 kg ha-1), gross return (₹102150/ha), net return (₹ 61650/ha) and return per rupee investment (₹ 2.52) in pigeon pea cv.PRG176.

Micronutrient, yield, net return, pigeon pea, growth, Kalahandi

Article Details

How to Cite
Malik, H. N., Naik, U., Sahoo, U., Panda, A., Phonglosa, A., Bhattacharya, R., & Rahman, F. H. (2021). Influence of Micronutrient Managment on Growth and Yield Attributes in Pigeonpea [Cajanus cajan (L.) CV. PRG176] in Kalahandi District of Odisha. Journal of Experimental Agriculture International, 43(2), 86-93.
Original Research Article


Narendra K. Rajendra PS. Rakesh K. Om H. Effect of integrated nutrient management on the performance of sole and intercropped pigeonpea (Cajanus cajan) under rainfed conditions. Indian J. Agron. 2013;58(3): 309-315.

Joshi PK. Parthasarathy P. Gowda CLL. Jones RB. Silim SN. Saxena KB. Kumar J. The world chickpea and pigeon pea economies: Facts, trends and outlook. International Crops Research Institute for the Semi-Arid Tropics. Andhra Pradesh, India. 2001;68.

Saxena, KB. Genetic improvement of pigeon pea - A. Trop. Plant Biol. 2008;1:159-178.

Saxena KB. Kumar RV. Sultana R. QuaLy nutrition through pigeon pea— A review. Health. 2010;2(11):1335-1344.

Parray RA. Kaldate R. Chavan, R. Optimization of In-planta Method of Genetic Transformation in Pigeon Pea (Cajanus cajan L. Millsp.). Int. J. Cur. Micro. App. Sci. 2019;8(6):50-62.

Jukanti AK. Gaur PM. Gowda CLL. Chibbar RN. Nutritional and health benefits of chickpea (Cicer arietinum L.). Br. J. Nutr. 2012;108:11-26.

Srinivasan G. Gobi R. Balasubramanian A. Sathiyamurthi S. Influence of nipping and nutrient management practices on growth, yield attributes and yield in pigeonpea. Plant Archives. 2019;19:737-740

Alloway BJ. Micronutrient deficiencies in global crop production, 1st ed. Springer: Dordrecht, The Netherlands. 2015.

Shukla AK. Behera SK. All India research project on micro and secondary nutrients and pollutant elements in soils and plants: Research achievements and future thrusts. Indian J. Fertil. 2019;15:522–543.

Khan B. Baloch MS. Hussain SM. Micro-nutritional studies in pigeonpea. Pak. J. Biol. Sci. 1999;2:399–401.

Khudsar T. Arshi A. Siddiqi TO. Mahmooduzzafar Iqbal M. Zinc-induced changes in growth characters, foliar properties and Zn-accumulation capacity of pigeonpea at different stages of plant growth. J. Plant Nutr. 2008;31:281–306.

Singh P. Shukla AK. Behera SK. Tiwari PK. Zinc application enhances super oxide dismutase and carbonic anhydrase activities in zinc efficient and inefficient wheat genotypes. J. Soil Sci. Plant Nutr. 2019;19:477–487.

Welch RM. Graham RD. Breeding crops for enhanced micronutrient content. Plant Soil. 2002;245:205–214.

Rengel Z. Batten GD. Crowley DE. Agronomic approaches for improving the micronutrient density in edible portion of field crops. Field Crop. Res. 1999;60:27–40.

Li M. Tian X. Li X. Wang S. Effect of Zn application methods on Zn distribution and bioavailabiLy in wheat pearling fractions of two wheat genotypes. J. Integr. Agric. 2017;16:1617–1623.

Cakmak I. Kutman UB. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018;69:172–180.

Galrao EZ. Micronutrientes. In: Sousa, D.M.G.; Lobato, E. (Ed.). Cerrado: Correção do solo e adubação. Planaltina: Embrapa Cerrados. 2002;416.

Malta MR. Furtini Neto AE. Alves JD. Efeito da aplicaçao de zinco via foliar nasintese de triptofano, aminoacidos eproteinas soluveis emmudas decafeeiro. Bra. J. Plant Phy. 2002;14:31-37.

Shorrocks, V. M. The occurrence and correction of boron deficiency. Plant and Soil. 1997;193:121-148.

Anantawiroon P. Subedi KD. Rerkasem B. Screening wheat for boron efficiency In: Boron in soils and Plants (Eds.) R. W. Bell and B. Rerkasem. Kluwer Academic Publishers, Dordrecht. 1997;101- 104.

Goldbach HE. Yu Q, Wingende RR. Rapid response reactions of roots to boron deprivation. J. Plant Nutri. Soil Sci. 2001;164:173-181.

Prado RM. Romualdo LM. Rozane DE. Modos de aplicaçao de zinco na nutriçao e na produção de matéria seca do milho BRS 1001. Bioscience Journal. 2008;24:67-74.

Pilbeam DF. Kirkby EA. The physiological role of boron in plants, J. Pl. Nutrition. 1983;6:563-582,

Parr A. Loughman BC. Boron and membrane function in plants. In: Robb DA, Pierpoint WS. (eds), metals and micronutrients, Uptake and Utilization by Plants. Academic Press, New York. 1983;87-107.

Serrano R. Structure and function of plasma membrane ATPase. Ann. Rev. Plant Physiol. 1989;40:61- 94.

Handiganoor G. Mallikarjun S. Patil B. Vasudevan SN. Response of Pigeonpea (Cajanus cajan L.) to Seed polymerization with micronutrients and foliar spray at different growth stages. British Journal of Environment and Climate Change. 2017;7(4):205-213.

Epstein E. Mineral metabolism. In. Mineral nutrition in plants. Principles and perspectives. John Wiley and Sons Inc. 1972;285-322.

Krueger RW. Lovatt C. Albert LS. Metabolic requirement of Cucllrbita pepo for boron. Plant Physiol. 1987;83:254-258.

Kalyani RR. Devi V S. Satyanarayana NV. Madhavarao KV. Effect of foliar application of boron on crop growth and yield of pigeonpea (Cajanus Cajan (L.). Millspaugh). Indian J. Plant Physiol. 1993;36(4):223-226.

Yang Y. Huoken J. Zhengqian Bingyan W. Influence of boron, nitrogen and potassium nutritional level on boron uptake, quaLy and yield of rape seed. Sci. Agric. Sci. 1989;22:44051.

Dell BL. Huang L. Physiological response of plants to low boron. Plant Soil. 1997;193:103-120.

Moeinian MR. Zargari K. Hasanpour J. Effect of boron foliar spraying application characteristics and growth parameters of wheat grain under drought stress. Am. Eur. J. Agric. Environ. Sci. 2011;1:593- 599.

Amruta N. Maruthi JB. Sarika G. Deepika C. Effect of integrated nutrient management and spacing on growth and yield parameters of blackgram cv. LBG-625 (Rashmi). The Bioscan 2015;10(1):193-198.

Sakal R. Sinha RB. Singh AP. Effect of B application on black gram and chickpea, Production in Calcareous soil. Fertilizer News. 1988;33:27-30.

Ye Z. Effect of low temperature on boron nutrition of Oilseed rape and sunflower, Perth, Western Australia. Ph.D. thesis, Murdoch University, Perth, Western Australia; 2004.