NIRS Estimation of the Nutritive Value of Sugarcane Silage at Different Harvest Seasons and with Additives
Joadil Gonçalves de Abreu
Federal University of Mato Grosso, Cuiabá, Brazil.
Daniele Cristina da Silva Kazama
Federal University of Santa Catarina, Florianópolis, Brazil.
Ana Leticia Scarmucin Doerzbacher
Federal University of Mato Grosso, Cuiabá, Brazil.
Vanessa Zanon Baldissarelli
Federal University of Santa Catarina, Florianópolis, Brazil.
Juliana Luiz Butzge
Federal University of Santa Catarina, Florianópolis, Brazil.
Wender Mateus Peixoto *
Federal University of Mato Grosso, Cuiabá, Brazil.
Dayenne Mariane Herrera
Federal University of Mato Grosso, Cuiabá, Brazil.
*Author to whom correspondence should be addressed.
Abstract
This study aimed to evaluate the nutritive value of sugarcane silage at different harvest seasons and treated with additives, as well as its estimation by near-infrared reflectance spectroscopy. The experiment was developed in Colorado do Oeste, RO, Brazil, being adopted a completely randomized design with four repetitions. The treatments were arranged in a 3´5 factorial scheme, being: three harvest seasons (March, May and July); and five additives: 10% corn flour; 10% disintegrated straw and cob corn; 15% rice bran; 1,0% urea; no additive. Dry matter, crude protein, neutral detergent fiber, acid detergent fiber, ash, indigestible neutral detergent fiber and estimated total digestible nutrients contents were evaluated. The nutritive value of sugarcane silage improves with additives, when compared to sugarcane silage in natura. The moisture sequestering additives present better results when compared to urea, with the exception of crude protein content. The co-product rice bran provides reduced fiber content, and increased crude protein and total digestible nutrient contents of the silage. The silage produced in July and with additives provides the highest contents of total digestible nutrients. The near-infrared reflectance spectroscopy estimates are excellent (R2cv > 0.95) for crude protein, neutral detergent fiber, acid detergent fiber, and ash, offering ranchers and researchers a fast and inexpensive service.
Keywords: Corn flour, harvesting age, near-infrared spectroscopy, rice bran, Saccharum spp
How to Cite
References
Voltolini TV, Silva JG, Silva WEL, Nascimento JML, Queiroz MAA, Oliveira AR. Nutritive value of cultivars of cane sugar under irrigation. Brazilian Journal of Animal Health and Production. 2012;13(4): 894-901. DOI: 10.1590/S1519-99402012000400001
Queiroz MAA, Silva JG, Galati RL, Oliveira AFM. Fermentative and chemical characteristics of sugarcane silages with "taboa". Ciência Rural. 2015;45(01):136-141. Available:https://doi.org/10.1590/0103-8478cr20140164
Sá Neto A, Nussio LG, Zopollatto M, Junges D, Bispo AW. Corn and sugarcane silages with Lactobacillus buchneri alone or associated with L. plantarum. Brazilian Journal of Agricultural Research. 2013; 48(5):528-535.
Available:https://doi.org/10.1590/S0100-204X2013000500009
Dias AM, Ítavo LCV, Ítavo CCBF, Blan LR, Gomes ENO, Soares CM, Leal ES, Nogueira E, Coelho EM. Urea and crude glycerin as additive in sugar cane silage. Brazilian Journal of Veterinary and Animal Sciences. 2014;66(6):1874-1882.
Available:https://doi.org/10.1590/1678-7349
Vilela HH, Pires LKMC, Caixeta DC, Souza RM, Tavares VB. Sugar cane ensiled with salt or urea. Brazilian Journal of Susteinable Agriculture. 2014;4(1):38-44. Available:https://doi.org/10.21206/rbas.v4i1.234
Rech AF. Food sampling for bromatological analysis. Agropecuária Catarinense. 2018;31(1):33-36.
Available:10.22491/RAC.2018.v31n1
Fontanelli RS, Durr JW, Scheffer-Basso SM, Haubert F, Bortolini F. Validation of the Near Infrared Reflectance Method for the Analysis of Corn Silage. Brazilian Journal of Animal Science. 2002;31(2): 594-598.
Available:https://doi.org/10.1590/S1516-35982002000300008
Massignani C, Vandresen BB, Marques JV, Kazama R, Osmari MP, Silva-Kazama DC. A single calibration of near-infrared spectroscopy to determine the quality of forage for multiple species. Research, Society and Development. 2021;10(10):1-10. Available:https://doi.org/10.33448/rsd-v10i10.18990
Serafim CC, Guerra GL, Mizubuti IY, Castro FAB, Prado-Calixto OP, Galbiero S, Parra ARP, Bumbieris Junior VH, Pértile SFN, Rego FCA. Use of nearinfrared spectroscopy for prediction of chemical composition of Tifton 85 grass. Semina: Ciências Agrárias. 2021;42(3):1287-1302. DOI: 10.5433/1679-0359.2021v42n3p1287
Pasquini C. Princípios da espectroscopia no infravermelho próximo. In Espectroscopia no infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos, 1st ed.; Tibola CS, Medeiros EP, Simeone MLF, Oliveira MA, editors. Embrapa: Brasília, Brazil. 2018; 13-30.
Ibañez L, Alomar D. Prediction of the chemical composition and fermentation parameters of pasture silage by near infrared reflectance spectroscopy (NIRS). Chilean Journal of Agricultural Research. 2008;68(4):352-359.
Available:https://hdl.handle.net/1807/45710
Arzani H, Sanaei A, Barker AV, Ghafari S, Motamedi J. Estimating nitrogen and acid detergent fiber contents of grass species using near infrared reflectance spectroscopy (NIRS). Journal of Rangeland Science. 2015;5:260-268.
Available:https://journals.iau.ir/article_516634.html
Genro TCM, Quadros FLF, Coelho LGM, Coelho Filho RC. Forage production and quality of corn (Zea mays) and sorghum (Sorghum bicolor) hybrids silage. Ciência Rural. 1995;25(3):461-464.
Available:https://doi.org/10.1590/S0103-84781995000300023
AOAC. Official methods of analysis. 16th ed.; Association of Official Analytical Chemist: Arlington, VA, USA. 1995;1:1117.
Silva DJ, Queiroz AC. Análise de alimentos: métodos químicos e biológicos, 3rd ed.; UFV: Viçosa, Brazil. 2002;165.
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 1991;74(10):3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2
Detmann E, Souza MA, Valadares Filho SC, Queiroz AC, Berchielli TT, Saliba EOE, Cabral LS, Pina DS, Ladeira MM, Azevedo JAG. Métodos para análise de alimentos. (INCT - Ciência Animal), 2nd ed.; UFV: Viçosa, Brazil. 2012;214.
Cappelle ER, Valadares Filho SC, Silva JFC, Cecon PR. Estimates of the energy value from chemical characteristics of the feedstuffs. Brazilian Journal of Animal Science. 2001;30(6):1837-1856. Available:https://doi.org/10.1590/S1516-35982001000700022
Bjorsvik HR, Martens H. Data analysis: calibration of NIR instruments by PLS regression. In Burns DA, Ciurczak EW. Handbook of Near-infrared Analysis, 3rd ed.; Marcel Dekker: New York, USA. 2007;18.
Williams PC, Sobering DC. Comparasion of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy. 1993;1(1):25-32.
Available:https://doi.org/10.1255/jnirs.3
Carvalho FAL, Queiroz MAA, Silva JG, Voltolini TV. Fermentative characteristics in sugarcane silage with maniçoba. Ciência Rural. 2014;44(11):2078-2083. Available:https://doi.org/10.1590/0103-8478cr20131471
Silva JG, Queiroz MAA, Araújo GGL, Silva BG, Cunha JA, Rodrigues PHM. Fermentation characteristics of sugarcane silages with saltbush. Ciência Rural. 2014;44(3):555-560. Available:https://doi.org/10.1590/S0103-84782014000300027
Muraro GBP, Rossi Junior P, Oliveira VC, Granzotto PMC, Schogor LB. Effect of age at harvesting on the nutritive value and characteristics of sugarcane silage grown in two row spacings and three harvesting ages. Brazilian Journal of Animal Science. 2009;38(8): 1525-1531.
Available:https://doi.org/10.1590/S1516-35982009000800017
Salomão BM, Valadares Filho SC, Villela SDJ, Santos SA, Costa e Silva LF, Rotta PP. Productive performance of cattle fed sugarcane with different concentrate levels. Brazilian Journal of Veterinary and Animal Sciences. 2015;67(4):1077-1086. Available:https://doi.org/10.1590/1678-4162-7388
Lopes J, Evangelista AR. Fermentative and bromatological characteristics and population of yeast of sugarcane silage enriched with urea and with additive absorbent of humidity. Brazilian Journal of Animal Science. 2010; 39(5):984-991. Available:https://doi.org/10.1590/S1516-35982010000500007
McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. 2nd ed.; Merlow: Chalcomb Publications. 1991; 340.
Williams PC. Implementation of near-Infrared technology. In Williams PC, Norris KH. Near-infrared technology in agricultural and food industries. Saint Paul: American Association of Cereal Chemist. 2001;145-169.
Andueza D, Picard F, Jestin M, Andrieu J, Baumont R. NIRS prediction of the feed value of temperate forages: efficacy of four calibration strategies. Animal. 2011;5(7):1002-1013.
Available:https://doi.org/10.1017/S1751731110002697
Fonseca CEL, Pessoa Filho M, Braga GJ, Ramos AKB, Carvalho MA, Fernandes FD, Karia CT, Maciel GA, Athayde NB, Dessaune SN, Thomé SP, Garcia AC. Near-infrared reflectance spectroscopy as a tool for breeding Andropogon gayanus Kunth for forage quality. Journal of Agriculture and Veterinary Science. 2020;13(6):2319-2380.
DOI: 10.9790/2380-1306015766
Brogna N, Palmonari A, Canestrari G, Mammi L, Dalpra A, Formigoni A. Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. Journal of Dairy Science. 2018;101(2): 1234-1239. Available:https://doi.org/10.3168/jds.2017-13319
Bezada SQ, Arbaiza TF, Carcelén FC, San Marin FH, Lopez CL, Rojas JE, Rivadaneira V, Espezúa OF, Guevara JV, Vélez VM. Prediction of chemical composition and neutral detergent fibre of italian ryegrass (Lolium multiflorum LAM) by Near Infrared Spectroscopy (NIRS). Revista de Investigaciones Veterinarias del Perú. 2017;28(3):538-548.
Available:http://dx.doi.org/10.15381/rivep.v28i3.13357
Yang Z, Nie G, Pan L, Zhang Y, Huang L, Ma X, Zhang X. Development and validation of near infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ. 2017;5:14.
Available:https://doi.org/10.7717/peerj.3867
Parrini S, Acciaioli A, Crovetti A, Bozzi R. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal of Animal Science. 2018;17(1):87-91.
Available:https://doi.org/10.1080/1828051X.2017.1345659
Simeone MLF, Pimentel MAG, Gontijo Neto MM, Paes MCD, Silva DD. Uso da espectroscopia no infravermelho próximo e calibração multivariada para avaliar a composição química do milho. In Tibola CS, Medeiros EP, Simeone MLF, Oliveira MA. Espectroscopia no Infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Embrapa: Brasília, Brazil. 2018;51-62.
Gontijo Neto MM, Simeone MLF, Guimarães CC. Predição do teor de proteína bruta em biomassa de capins braquiária por meio de espectroscopia NIR. Comunicado Técnico, 205. Embrapa: Sete Lagoas, Minas Gerais, Brazil; 2012.
Molano LM, Cortes ML, Ávila P, Martens SD, Munoz LS. Near infrared spectroscopy (NIRS) calibration equations to predict nutritional quality parameters of tropical forages. Tropical Grasslands. 2016;4(3): 106-107.
Available:https://doi.org/10.17138/tgft(4)139-145