NIRS Estimation of the Nutritive Value of Sugarcane Silage at Different Harvest Seasons and with Additives

Joadil Gonçalves de Abreu

Federal University of Mato Grosso, Cuiabá, Brazil.

Daniele Cristina da Silva Kazama

Federal University of Santa Catarina, Florianópolis, Brazil.

Ana Leticia Scarmucin Doerzbacher

Federal University of Mato Grosso, Cuiabá, Brazil.

Vanessa Zanon Baldissarelli

Federal University of Santa Catarina, Florianópolis, Brazil.

Juliana Luiz Butzge

Federal University of Santa Catarina, Florianópolis, Brazil.

Wender Mateus Peixoto *

Federal University of Mato Grosso, Cuiabá, Brazil.

Dayenne Mariane Herrera

Federal University of Mato Grosso, Cuiabá, Brazil.

*Author to whom correspondence should be addressed.


This study aimed to evaluate the nutritive value of sugarcane silage at different harvest seasons and treated with additives, as well as its estimation by near-infrared reflectance spectroscopy. The experiment was developed in Colorado do Oeste, RO, Brazil, being adopted a completely randomized design with four repetitions. The treatments were arranged in a 3´5 factorial scheme, being: three harvest seasons (March, May and July); and five additives: 10% corn flour; 10% disintegrated straw and cob corn; 15% rice bran; 1,0% urea; no additive. Dry matter, crude protein, neutral detergent fiber, acid detergent fiber, ash, indigestible neutral detergent fiber and estimated total digestible nutrients contents were evaluated. The nutritive value of sugarcane silage improves with additives, when compared to sugarcane silage in natura. The moisture sequestering additives present better results when compared to urea, with the exception of crude protein content. The co-product rice bran provides reduced fiber content, and increased crude protein and total digestible nutrient contents of the silage. The silage produced in July and with additives provides the highest contents of total digestible nutrients. The near-infrared reflectance spectroscopy estimates are excellent (R2cv > 0.95) for crude protein, neutral detergent fiber, acid detergent fiber, and ash, offering ranchers and researchers a fast and inexpensive service.

Keywords: Corn flour, harvesting age, near-infrared spectroscopy, rice bran, Saccharum spp

How to Cite

Abreu, J. G. de, Kazama, D. C. da S., Doerzbacher, A. L. S., Baldissarelli, V. Z., Butzge, J. L., Peixoto, W. M., & Herrera, D. M. (2023). NIRS Estimation of the Nutritive Value of Sugarcane Silage at Different Harvest Seasons and with Additives. Journal of Experimental Agriculture International, 45(4), 1–13.


Voltolini TV, Silva JG, Silva WEL, Nascimento JML, Queiroz MAA, Oliveira AR. Nutritive value of cultivars of cane sugar under irrigation. Brazilian Journal of Animal Health and Production. 2012;13(4): 894-901. DOI: 10.1590/S1519-99402012000400001

Queiroz MAA, Silva JG, Galati RL, Oliveira AFM. Fermentative and chemical characteristics of sugarcane silages with "taboa". Ciência Rural. 2015;45(01):136-141. Available:

Sá Neto A, Nussio LG, Zopollatto M, Junges D, Bispo AW. Corn and sugarcane silages with Lactobacillus buchneri alone or associated with L. plantarum. Brazilian Journal of Agricultural Research. 2013; 48(5):528-535.


Dias AM, Ítavo LCV, Ítavo CCBF, Blan LR, Gomes ENO, Soares CM, Leal ES, Nogueira E, Coelho EM. Urea and crude glycerin as additive in sugar cane silage. Brazilian Journal of Veterinary and Animal Sciences. 2014;66(6):1874-1882.


Vilela HH, Pires LKMC, Caixeta DC, Souza RM, Tavares VB. Sugar cane ensiled with salt or urea. Brazilian Journal of Susteinable Agriculture. 2014;4(1):38-44. Available:

Rech AF. Food sampling for bromatological analysis. Agropecuária Catarinense. 2018;31(1):33-36.


Fontanelli RS, Durr JW, Scheffer-Basso SM, Haubert F, Bortolini F. Validation of the Near Infrared Reflectance Method for the Analysis of Corn Silage. Brazilian Journal of Animal Science. 2002;31(2): 594-598.


Massignani C, Vandresen BB, Marques JV, Kazama R, Osmari MP, Silva-Kazama DC. A single calibration of near-infrared spectroscopy to determine the quality of forage for multiple species. Research, Society and Development. 2021;10(10):1-10. Available:

Serafim CC, Guerra GL, Mizubuti IY, Castro FAB, Prado-Calixto OP, Galbiero S, Parra ARP, Bumbieris Junior VH, Pértile SFN, Rego FCA. Use of nearinfrared spectroscopy for prediction of chemical composition of Tifton 85 grass. Semina: Ciências Agrárias. 2021;42(3):1287-1302. DOI: 10.5433/1679-0359.2021v42n3p1287

Pasquini C. Princípios da espectroscopia no infravermelho próximo. In Espectroscopia no infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos, 1st ed.; Tibola CS, Medeiros EP, Simeone MLF, Oliveira MA, editors. Embrapa: Brasília, Brazil. 2018; 13-30.

Ibañez L, Alomar D. Prediction of the chemical composition and fermentation parameters of pasture silage by near infrared reflectance spectroscopy (NIRS). Chilean Journal of Agricultural Research. 2008;68(4):352-359.


Arzani H, Sanaei A, Barker AV, Ghafari S, Motamedi J. Estimating nitrogen and acid detergent fiber contents of grass species using near infrared reflectance spectroscopy (NIRS). Journal of Rangeland Science. 2015;5:260-268.


Genro TCM, Quadros FLF, Coelho LGM, Coelho Filho RC. Forage production and quality of corn (Zea mays) and sorghum (Sorghum bicolor) hybrids silage. Ciência Rural. 1995;25(3):461-464.


AOAC. Official methods of analysis. 16th ed.; Association of Official Analytical Chemist: Arlington, VA, USA. 1995;1:1117.

Silva DJ, Queiroz AC. Análise de alimentos: métodos químicos e biológicos, 3rd ed.; UFV: Viçosa, Brazil. 2002;165.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 1991;74(10):3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2

Detmann E, Souza MA, Valadares Filho SC, Queiroz AC, Berchielli TT, Saliba EOE, Cabral LS, Pina DS, Ladeira MM, Azevedo JAG. Métodos para análise de alimentos. (INCT - Ciência Animal), 2nd ed.; UFV: Viçosa, Brazil. 2012;214.

Cappelle ER, Valadares Filho SC, Silva JFC, Cecon PR. Estimates of the energy value from chemical characteristics of the feedstuffs. Brazilian Journal of Animal Science. 2001;30(6):1837-1856. Available:

Bjorsvik HR, Martens H. Data analysis: calibration of NIR instruments by PLS regression. In Burns DA, Ciurczak EW. Handbook of Near-infrared Analysis, 3rd ed.; Marcel Dekker: New York, USA. 2007;18.

Williams PC, Sobering DC. Comparasion of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. Journal of Near Infrared Spectroscopy. 1993;1(1):25-32.


Carvalho FAL, Queiroz MAA, Silva JG, Voltolini TV. Fermentative characteristics in sugarcane silage with maniçoba. Ciência Rural. 2014;44(11):2078-2083. Available:

Silva JG, Queiroz MAA, Araújo GGL, Silva BG, Cunha JA, Rodrigues PHM. Fermentation characteristics of sugarcane silages with saltbush. Ciência Rural. 2014;44(3):555-560. Available:

Muraro GBP, Rossi Junior P, Oliveira VC, Granzotto PMC, Schogor LB. Effect of age at harvesting on the nutritive value and characteristics of sugarcane silage grown in two row spacings and three harvesting ages. Brazilian Journal of Animal Science. 2009;38(8): 1525-1531.


Salomão BM, Valadares Filho SC, Villela SDJ, Santos SA, Costa e Silva LF, Rotta PP. Productive performance of cattle fed sugarcane with different concentrate levels. Brazilian Journal of Veterinary and Animal Sciences. 2015;67(4):1077-1086. Available:

Lopes J, Evangelista AR. Fermentative and bromatological characteristics and population of yeast of sugarcane silage enriched with urea and with additive absorbent of humidity. Brazilian Journal of Animal Science. 2010; 39(5):984-991. Available:

McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. 2nd ed.; Merlow: Chalcomb Publications. 1991; 340.

Williams PC. Implementation of near-Infrared technology. In Williams PC, Norris KH. Near-infrared technology in agricultural and food industries. Saint Paul: American Association of Cereal Chemist. 2001;145-169.

Andueza D, Picard F, Jestin M, Andrieu J, Baumont R. NIRS prediction of the feed value of temperate forages: efficacy of four calibration strategies. Animal. 2011;5(7):1002-1013.


Fonseca CEL, Pessoa Filho M, Braga GJ, Ramos AKB, Carvalho MA, Fernandes FD, Karia CT, Maciel GA, Athayde NB, Dessaune SN, Thomé SP, Garcia AC. Near-infrared reflectance spectroscopy as a tool for breeding Andropogon gayanus Kunth for forage quality. Journal of Agriculture and Veterinary Science. 2020;13(6):2319-2380.

DOI: 10.9790/2380-1306015766

Brogna N, Palmonari A, Canestrari G, Mammi L, Dalpra A, Formigoni A. Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. Journal of Dairy Science. 2018;101(2): 1234-1239. Available:

Bezada SQ, Arbaiza TF, Carcelén FC, San Marin FH, Lopez CL, Rojas JE, Rivadaneira V, Espezúa OF, Guevara JV, Vélez VM. Prediction of chemical composition and neutral detergent fibre of italian ryegrass (Lolium multiflorum LAM) by Near Infrared Spectroscopy (NIRS). Revista de Investigaciones Veterinarias del Perú. 2017;28(3):538-548.


Yang Z, Nie G, Pan L, Zhang Y, Huang L, Ma X, Zhang X. Development and validation of near infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ. 2017;5:14.


Parrini S, Acciaioli A, Crovetti A, Bozzi R. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Italian Journal of Animal Science. 2018;17(1):87-91.


Simeone MLF, Pimentel MAG, Gontijo Neto MM, Paes MCD, Silva DD. Uso da espectroscopia no infravermelho próximo e calibração multivariada para avaliar a composição química do milho. In Tibola CS, Medeiros EP, Simeone MLF, Oliveira MA. Espectroscopia no Infravermelho próximo para avaliar indicadores de qualidade tecnológica e contaminantes em grãos. Embrapa: Brasília, Brazil. 2018;51-62.

Gontijo Neto MM, Simeone MLF, Guimarães CC. Predição do teor de proteína bruta em biomassa de capins braquiária por meio de espectroscopia NIR. Comunicado Técnico, 205. Embrapa: Sete Lagoas, Minas Gerais, Brazil; 2012.

Molano LM, Cortes ML, Ávila P, Martens SD, Munoz LS. Near infrared spectroscopy (NIRS) calibration equations to predict nutritional quality parameters of tropical forages. Tropical Grasslands. 2016;4(3): 106-107.