Combining Fully Acidulated Phosphates with Phosphate-Solubilizing Microorganisms for Urochloa brizantha Fertilization

Gustavo Henrique Peralta de Oliveira

Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

Wender Mateus Peixoto *

Federal University of Mato Grosso, Cuiabá, Brazil.

Rafael Henrique Pereira dos Reis

Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

Edicarlos Damacena de Souza

Federal University of Rondonópolis, Rondonópolis, Brazil.

Joadil Gonçalves de Abreu

Federal University of Mato Grosso, Cuiabá, Brazil.

Ernando Balbinot

Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

Fagton de Mattos Negrão

Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

Edmilson Fabiciack dos Passos

Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

Ricardo Pereira Costa

Ricardo Pereira Costa Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil.

*Author to whom correspondence should be addressed.


Aimed to evaluate the productive, morphological and nutritional characteristics, in addition to the accumulation of nutrients in the aerial part of Urochloa brizantha cv. Marandu subjected to phosphorus chemical sources and its interaction with phosphate-solubilizing inoculant. The experiment was developed in Colorado do Oeste, RO, Brazil, being adopted a randomized block design with three replications. The treatments consisted of different phosphate fertilizer doses associated or not with phosphate-solubilizing microorganisms (PSM): 0% P; 50% P; 100% P; 50% P + 250 mL ha-1 PSM; 50% P + 500 mL ha-1 PSM; 50% P + 750 mL ha-1 PSM; and 50% P + 1000 mL ha-1 PSM. Triple superphosphate was used as a chemical fertilizer, and fertilization with chemical fertilizer and PSM occurred on November 19th, 2021. The results for the morphological characteristics and yields of Marandu grass showed significant differences. The different arrangements and phosphate doses influenced the green matter yield and dry matter yield, both using the 50% P + 1000 mL ha-1 PSM presented higher yields (3,642.75 kg ha-1 and 1,049.10 kg ha-1, respectively). Higher crop growth rate results in green matter were also found when employing a combination of 50% P + 500 mL ha-1 PSM and 50% P + 1000 mL ha-1 PSM. Dry matter had a significant effect on the bromatological composition, with higher results observed when using 50% P alone (34.55%). Regarding the accumulation of nutrients in the aerial part, the highest P accumulation in Marandu grass was observed when utilizing 100% P, resulting in an accumulation of 15.4 kg P ha-1. Inoculation with PSM for fertilization of U. brizantha cv. Marandu grass does not have adverse effects on the increase in P availability to the plant, resulting in adequate yield and crop development associated with the productive potential of the area.

Keywords: Fertilizer doses, Marandu grass, nutrient transport, phosphorus, soil fertility

How to Cite

Oliveira , G. H. P. de, Peixoto , W. M., Reis , R. H. P. dos, Souza , E. D. de, Abreu , J. G. de, Balbinot , E., Negrão , F. de M., Passos , E. F. dos, & Costa , R. P. (2023). Combining Fully Acidulated Phosphates with Phosphate-Solubilizing Microorganisms for Urochloa brizantha Fertilization. Journal of Experimental Agriculture International, 45(8), 138–150.


Download data is not yet available.


USDA. Livestock and Products Annual. United States Department of Agriculture: Foreign Agricultural Service. 2022:3-24.

CONAB. Oferta e Demanda de Carnes. 2022. Accessed 20 September 2022. Available: extrativista/analises-do-mercado/oferta-e-demanda-de-carnes

Almeida M, Bacha CJC. Bibliographic about Brazilian milk production efficiency. Agricultural Policy Magazine. 2021;1: 20-33.


Cordeiro MWS, Rocha Júnior VR, Monção FP, Palma MNN, Rigueira JPS, Carvalho CCS, Costa MD, D’Angelo MFSV, Costa NM, Oliveira LIS. Tropical grass silages with spineless cactus in diets of Holstein × Zebu heifers in the semiarid region of Brazil. Tropical Animal Health Production. 2023;55:89.

DOI: 10.1007/s11250-023-03506-6

Torres-Lugo RB, Solorio-Sánchez FJ, Avilés LR, Ku-Ver JC, Aguilar-Pérez CF, Santillano-Cázares J. Productivity, Morphology and Chemical Composition of Brachiaria spp. Ecotypes, under Two Solar Illumination Intensities, in Yucatan, Mexico. Agronomy. 2022;12:2634.


Brandstetter EV, Costa KAP, Santos DC, Souza WF, Silva VC, Dias MBC. Protein and carbohydrate fractionation of Jiggs Bermudagrass in different seasons and under intermittent grazing by Holstein cows. Acta Scientiarum. Animal Sciences. 2019;41. Available:

Oliveira MW, Goretti AL, Lana RP, Rodrigues TC. Dry matter and protein accumulation as a function of nitrogen fertilization in Brachiaria brizantha cv. marandu (Urochloa brizantha). Brazilian Journal of Sustainable Agriculture. 2022; 12(1):10–18. Available:

Teixeira EMM, Dias-Pereira J, Drumond LCD, God PIVG, Araújo HH. Leaf anatomy of Urochloa brizantha and Urochloa ruziziensis (Poaceae) plants subjected to different fertilization management practices. Agronomy Science and Biotechnology. 2022;8:1-14.


Adnew W, Tsegay BA, Tassew A, Asmare B. Combinations of Urochloa hybrid Mulato II and natural pasture hays as a basal diet for growing Farta lambs in Ethiopi. Tropical Grasslands-Forrajes Tropicales. 2021;9(2): 206–215.


Juntasin W, Imura Y, Nakamura I, Hossain MA, Thaikua S, Poungkaew R, Kawamoto Y. Effects of Closing Cut Date and Nitrogen Fertilization on Seed Yield and Seed Quality in Two Novel Cultivars of Urochloa spp. Agronomy. 2022;12:513.


Lopes AS, Guimarães GLR. A Career Perspective on Soil Management in the Cerrado Region of Brazil. Advances in Agronomy. 2016;137:1-72.


Lino TPDOH, Melo FSP. Uso de siligesso 70® na recuperação de pastagem degradada de capim-marandu na região do cerrado. Revista Panorâmica Online. 2019;3.


Bezerra RCA, Leite MLMV, Almeida MCR, Lucena LRR, Simões VJLP, Bezerra FJSM. Urochloa mosambicensis agronomic characteristics under different levels of phosphorus and nitrogen. Magistra. 2019;30:268–276.


Viana G. Product with Brazilian technology can reverse dependence on foreign phosphorus fertilizers. Embrapa Maize and Sorghum; 2019.


Damaceno JBD, Ferreira E, Oliveira DM, Souza Guimarães R, Gama RT, Padilha JF. Produção de biomassa de Brachiaria ruziziensis adubada com farinha de ossos calcinada sob tratamentos ácidos. Revista Agrogeoambiental. 2018;10:1-11.


Pavinato PS, Cherubin MR, Soltangheis A, Rocha GC, Chadwick DR, Jones DL. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Nature. 2020;10.


Benício LPF, Lima SO, Santos VM. Avaliação da aplicação de diferentes doses de rejeito de rocha fosfática no desenvolvimento do Capim Piatã na ausência e presença de calagem. Magistra. 2013;25:228-241.


Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Nature. 2020;10.


Wang W, Sarpong CK, Song C, Zhang X, Gan Y, Wang X, Yong T, Chang X, Wang Y, Yang W. Screening, identification and growth promotion ability of phosphate solubilizing bacteria from soybean rhizosphere under maize-soybean intercropping systems. bioRxiv; 2020.


Moreira FMS, Silva K, Nóbrega RSA, Carvalho F. Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comunicata Scientiae. 2010;1(2):74-74.


Rampim L, Guimarães VF, Salla FH, Costa ACPR, Inagaki AM, Bulegon L, França R. Initial development of reinoculated maize seedlings with diazotrophic bacteria. Research, Society and Development. 2020;9(5).


Köppen W, Geiger R. Klimate der Erde. Gotha: Verlag Justus Perthes; 1928.

Instituto Nacional de Meteorologia do Brasil – INMET. Normais Climatológicas (2013). Colorado do Oeste – RO; 2023. Available:

Rajput A, Rajput SS, Jha G. Physiological Parameters Leaf Area Index, Crop Growth Rate, Relative Growth Rate and Net Assimilation Rate of Different Varieties of Rice Grown In Different Planting Geometries and Depths in SRI. International Journal of Pure & Applied Bioscience. 2017;5(1):362-367.


Silva JD, Queiroz AC. Análises de alimentos: métodos químicos e biológicos. UFV. 2002;156.

Claessen, MEC, Barreto WO, Paula JL, Duarte MN. Serviço Nacional de Levantamento e Conservação dos Solos. Manual de métodos de análises químicas dos solos. Embrapa-CNPS. 1997;212.


R Development CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

Santos MS, Nogueira MA, Hungria M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express. 2019;9:205.


Santos MS, Nogueira MA, Hungria M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Brazilian Society of Soil Science. 2021;45:1-31.


Guimarães GS, Rondina ABL, Santos MS, Nogueira MA, Hungria M. Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability. Agronomy. 2022;12:1748.


Porto EMV, Alves DA, Vitor CMT, Gomes VM, Silva MF, David AMSS. Rendimento forrageiro da Brachiaria brizantha cv. marandu submetida a doses crescentes de fósforo. Scientia Agraria Paranaensis. 2012;11:25-34.


Dias-Filho MB. Desafios da produção animal em pastagens na fronteira agrícola brasileira. R. Bras. Zootec. 2011;40: 243–252. Available:

Oliveira LB, Tiecher T, Quadros FLF, Trindade JPP, Gatiboni LC, Brunetto G, Santos DR. Formas de fósforo no solo sob pastagens naturais submetidas à adição de fosfatos. Brazilian Society of Soil Science. 2014;38:867–878.


Rondina ABL, Lescano LEAM, Alves RA, Matsuura EM, Nogueira MA, Zangaro W. Arbuscular mycorrhizas increase survival, precocity and flowering of herbaceous and shrubby species of early stages of tropical succession in pot cultivation. J. Trop. Ecol. 2014;30:599- 614. Available:

Zangaro W, Lescano LEAM, Matsuura EM, Rondina ABL, Nogueira MA. Interactions between arbuscular mycorrhizal fungi and exotic grasses differentially affect the establishment of seedlings of early-and late-successional woody species. Appl. Soil Ecol. 2018;124:394-406.


Cavagnaro RA, Oyarzabal M, Oesterheld M, Grimoldi AA. Species-specific trade-offs between regrowth and mycorrhizas in the face of defoliation and phosphorus addition. Fungal Ecol. 2021;51.


Costa SDA, Cardoso AF, Castro GLS, Silva Júnior DD, Silva TC, Silva GB. Co-Inoculation of Trichoderma asperellum with Bacillus subtilis to Promote Growth and Nutrient Absorption in Marandu Grass. Applied and Environmental Soil Science; 2022. DOI:

Souza R, Edvan R, Fontes L, Dias e Silva T, Silva A, Araújo M, Miranda R, Oliveira R, Pereira E, Andrade E, Pereira Filho J, Bezerra L. Morphological and Productive Characteristics and Chemical Composition of Grasses in Degraded Areas Subjected to Pasture Recovery Methods. Grasses. 2023;2(1):1-11.


Lopes J, Evangelista AR, Pinto JC, Queiroz DS, Muniz JA. Phosphorus rates in the establishment of intercropping of Xaraés grass and Mineirão stylo. R. Bras. Zootec. 2011;40(12):2658-2665. DOI:10.1590/S1516-35982011001200007

Rodrigues RC. Métodos de análises bromatológicas de alimentos: métodos físicos, químicos e bromatológicos. Embrapa Temperate Agriculture; 2010.


Ezequiel JMB, Gonçalves JSG. Princípios e conceitos na alimentação animal. In: Muniz EN, Gomide CAM, Rangel JHA, Almeida SA, Sá CO, Sá JL. Alternativas alimentares para Ruminantes II. Embrapa Tabuleiros Costeiros. 2008;17-51.


Valadares Filho SC, Magalhães KA, Rocha Júnior VR, Cappelle ER. Tabelas brasileiras de composição de alimentos para bovinos. CQBAL 2.0. Suprema Gráfica Ltda. 2006;1:329.

Sampaio FAR, Teixeira Filho MCM, Oliveira CES, Jalal A, Boleta EHM, Lima BH, Rosa PAL, Galindo FS, Souza JS. Nitrogen supply associated with rhizobacteria in the first productive cycle of Marandu grass. Journal of Crop Science and Biotechnology (Seoul). 2021;24: 429-439.


Magalhães AF, Pires AJV, Carvalho GGP. Composição bromatológica do capim Brachiaria decumbens Stapf adubado com doses crescentes de nitrogênio e de fósforo. Proceedings of the Brazilian Society of Animal Science. 2005;42.


Nussio LG, Manzano RP, Pedreira CGS. Valor alimentício em plantas do gênero Cynodon. In Peixoto AM, Moura JC, Faria VP. Proceeding Simpósio Sobre Manejo da Pastagem. Piracicaba:FEALQ. 1998; 15:203-242.

Andrade RA, Brito RS, Carvalho CA, Silva SB, Drumond e Silva MA, Moraes KNO. Nutrient accumulation in the leaves and production of Tamani grass inoculated with Azospirillum brasilense. Green Journal of Agroecology and Sustainable Development. 2022;17(2):77-85.


D'angioli AM, Viani RAG, Lambers H, Sawaya ACHF, Oliveira RSA. Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant and Soil. 2017;410(1):499-507. DOI:10.1007/s11104-016-3044-5

Zeffa DM, Perini LJ, Silva MB, Sousa NV, Scapim CA, Oliveira ALM, Amaral Júnior AT, Gonçalves LSA. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLOS ONE. 2019;14(4): 1-19.


Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Frontiers in Sustainable Food Systems. 2020;4(1):1-15.


Malavolta E, Vitti GC, Oliveira AS. Avaliação do estado nutricional das plantas: princípios e aplicações. Associação Brasileira para Pesquisa da Potassa e do Fosfato. 1997;319.

Somavilla A, Marques ACR, Caner L, Oliveira LB, Quadros FLF, Chabbi A, Tiecher T, Santos DR. Phosphate fertilization and liming in a trial conducted over 21 years: A survey for greater forage production and Pampa pasture conservation. European Journal of Agronomy. 2021;125:10.


Guimarães AKV, Pinto JC, Faquin V, Castro EM, Boldrin PF, Faria MR, Marinho JVN. Morfology, Nutritional value and anatomy of Brachiaria brizantha under phosphorus doses and cutting ages. Conjecturas. 2021;21,246-259.


Van Soest PJ. Nutritional Ecology of Ruminants. Cornell University Press. 1994;476.