Precision Aquaculture: A Way Forward for Sustainable Agriculture

Swapnil Ananda Narsale

Fisheries College and Research Institute, TNJFU, Thoothukudi- 628 008, Tamil Nadu, India.

Patekar Prakash

ICAR — Central Institute of Fisheries Education, Mumbai - 400061, Maharashtra, India.

Hari Prasad Mohale *

Fisheries College and Research Institute, TNJFU, Thoothukudi- 628 008, Tamil Nadu, India.

Ravi Baraiya

Kerala University of Fisheries and Ocean Studies, Kochi – 682506, Kerala, India.

Samad Sheikh

ICAR — Central Institute of Fisheries Education, Mumbai - 400061, Maharashtra, India.

Parmar Bindiya Kirtikumar

Kerala University of Fisheries and Ocean Studies, Kochi – 682506, Kerala, India.

Chovatia Ravikumar Mansukhbhai

Kerala University of Fisheries and Ocean Studies, Kochi – 682506, Kerala, India.

Rishikesh Venkatrao Kadam

Fisheries College and Research Institute, TNJFU, Thoothukudi- 628 008, Tamil Nadu, India.

Indulata Tekam

RPCAU- College of Fisheries, Dholi - 843121, Bihar, India.

*Author to whom correspondence should be addressed.


Abstract

The escalating demands for food, fiber, energy, and water due to swift population growth have underscored the necessity for the sustainable utilization of natural resources. The advent of precision farming tools and machinery since the 1990s has markedly enhanced productivity and optimized the employment of inputs in aquaculture. The burgeoning connectivity in rural regions and its improved integration with data from sensor systems, remote sensors, equipment, and smartphones have paved the way for innovative concepts in Digital Aquaculture. Automation is the most effective strategy to manage situations, augment productivity, and reduce manufacturing costs. Biosensors are deployed to control unidentified sensor-based remotely and guided aerial vehicles to apply chemicals or fertilizers while monitoring water quality. A sophisticated aeration system manages the concentration of dissolved oxygen. Another critical aspect is the administration of feeding and automatic biomass estimation. Robotics and automatic feeders are employed in ponds and cages to minimize feed wastage and the Feed Conversion Ratio (FCR), with these tools being dependent on the behaviour of the organisms and the water condition. Post-harvest, farmers acquire information on biomass estimation to attain optimal yield. The most vital element is the automatic monitoring of the health and welfare management of the organism to detect any challenging situations or early signs of anomalies. An underwater surveillance system, a camera-based visual system, collects data on water quality, organism activity, feeding, cage biofouling, and net cleaning. Automation is poised to shape the future of the aquaculture industry to make the nations agriculture sustainable.

Keywords: Aquaculture, technology, tools, automatic, production


How to Cite

Narsale, S. A., Prakash , P., Mohale, H. P., Baraiya , R., Sheikh , S., Kirtikumar , P. B., Mansukhbhai, C. R., Kadam , R. V., & Tekam, I. (2024). Precision Aquaculture: A Way Forward for Sustainable Agriculture. Journal of Experimental Agriculture International, 46(5), 83–97. https://doi.org/10.9734/jeai/2024/v46i52360

Downloads

Download data is not yet available.

References

Teixeira RR, Puccinelli JB, Poersch L, Pias MR, Oliveira VM, Janati A, Paris M. Towards Precision Aquaculture: A High Performance, Cost-effective IoT approach, ArXiv Prepr. ArXiv210511493; 2021.

Mondejar ME, Avtar R, Diaz HLB, Dubey RK, Esteban J, Gómez-Morales A, Hallam B, Mbungu NT, Okolo CC, Prasad KA. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet, Sci. Total Environ. 2021;794:148539.

Nicolétis É, Caron P, El Solh M, Cole M, Fresco LO, Godoy-Faúndez A, Kadleciková M, Kennedy E, Khan M, Li X. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; 2019.

Bolfe ÉL, de CLA. Jorge ID. Sanches A. Luchiari Júnior, da Costa CC, de CD, Victoria RY, Inamasu CR,Grego Ferreira VR, Ramirez AR. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers, Agriculture 10 (2020) 653.

An D, Huang J, Wei Y. A survey of fish behaviour quantification indexes and methods in aquaculture, Rev. Aquac. 2021;13:2169–2189.

Meade JW. Aquaculture management, Springer Science & Business Media; 2012.

Antonucci F, Costa C. Precision aquaculture: A short review on engineering innovations, Aquac. Int. 2020;28:41–57.

Boyd C, McNevin A. Aquaculture, resource use, and the environment, John Wiley & Sons; 2015.

Zainurin SN, Wan Ismail WZ, Mahamud SNI, Ismail I, Jamaludin J, Ariffin KNZ, Wan Ahmad Kamil WM. Advancements in monitoring water quality based on various sensing methods: a systematic review, Int. J. Environ. Res. Public. Health. 2022’19:14080.

Manoj M, Rajan R. Precision aquaculture using iot & machine learning techniques, Agpe R. Gondwana Res. J. Hist. Sci. Econ. Polit. Soc. Sci. 2020;2:105–111.

Somerville C, Cohen M, Pantanella E, Stankus A, Lovatelli A. Small-scale aquaponic food production: Integrated fish and plant farming, FAO Fish. Aquac. Tech. Pap. I; 2014.

Chahid A, N’Doye I, Majoris JE, Berumen ML, Laleg-Kirati TM. Model predictive control paradigms for fish growth reference tracking in precision aquaculture, J. Process Control. 2021;105:160–168.

Bardach JE, Ryther JH, McLarney WO. Aquaculture: The farming and husbandry of freshwater and marine organisms, John Wiley & Sons, 1974.

Føre M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, Eguiraun H, Watson W, Stahl A, Sunde LM. Precision fish farming: A new framework to improve production in aquaculture, Biosyst. Eng. 2018;173:176–193.

Shafi U, Mumtaz R, García-Nieto J, Hassan SA, Zaidi SAR, Iqbal N. Precision agriculture techniques and practices: From considerations to applications, Sensors. 2019;19:3796.

O’Donncha F, Stockwell CL, Planellas SR, Micallef G, Palmes P, Webb C, Filgueira R, Grant J. Data driven insight into fish behaviour and their use for precision aquaculture, Front. Anim. Sci. 2021;2:695054.

Jhariya MK, Banerjee A, Meena RS, Kumar S, Raj A Sustainable intensification for agroecosystem services and management: an overview, Sustain. Intensif. Agroecosystem Serv. Manag. 2021:1–35.

Gladju J, Kamalam BS, Kanagaraj A. Applications of data mining and machine learning framework in aquaculture and fisheries: A review, Smart Agric. Technol. 2022;2:100061.

Wang C, Li Z, Wang T, Xu X, Zhang X, Li D. Intelligent fish farm—the future of aquaculture, Aquac. Int. 2021:1–31.

Zhao S, Zhang S, Liu J, Wang H, Zhu J, Li D, Zhao R, Application of machine learning in intelligent fish aquaculture: A review, Aquaculture. 2021;540:736724.

Vo TTE, Ko H, Huh J-H, Kim Y, Overview of smart aquaculture system: Focusing on applications of machine learning and computer vision, Electronics. 2021;10:2882.

Sharma KK, Wani SP, Yaduraju NT, Nedumaran S, Rao A, Mazumdar SD, Ashok Kumar A, Bhatnagar-Mathur P, Tripathi SM, Karuppanchetty SM. Second Green Revolution: Growth Engine for Transformation. The Associated Chambers of Commerce and Industry of India; 2011.

O’Donncha F, Grant J, Precision aquaculture, IEEE Internet Things Mag. 2019;2;26–30.

Tian Y, Yang Z, Yu X, Jia Z, Rosso M, Dedman S, Zhu J, Xia Y, Zhang G, Yang J. Can we quantify the aquatic environmental plastic load from aquaculture? Water Res. 2022;219:118551.

Meaden GJ, Aguilar-Manjarrez J, Advances in geographic information systems and remote sensing for fisheries and aquaculture, FAO Fish. Aquac. Tech. Pap; 2013.

Bórquez López RA, Martinez Cordova LR, Gil Nuñez JC, Gonzalez Galaviz JR, Ibarra Gamez JC, Casillas Hernandez R. Implementation and evaluation of open-source hardware to monitor water quality in precision aquaculture, Sensors. 2020; 20:6112.

Paduan JD, Washburn L, High-frequency radar observations of ocean surface currents, Annu. Rev. Mar. Sci. 2013;5:115–136.

Parra L, Lloret G, J. Lloret, M. Rodilla, Physical sensors for precision aquaculture: A Review, IEEE Sens. J. 2018;18:3915–3923.

Yang X, Zhang S, Liu J, Gao Q, Dong S, Zhou C. Deep learning for smart fish farming: Applications, opportunities and challenges, Rev. Aquac. 2021;13:66–90.

Aldana Jague E. High resolution three dimensional spatial patterns of soil organic carbon storage in eroding agricultural landscapes, PhDdiss Univ. Cathol. Louvain. 2017:173.

Pérez Ruiz M, Upadhyaya S. GNSS in precision agricultural operations, Intech; 2012.

Mazzetto F, Gallo R, Riedl M, Sacco P. Proposal of an ontological approach to design and analyse farm information systems to support Precision Agriculture techniques, in: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 2019: p. 012008.

Castrignanò A, Buttafuoco G, Quarto R, Parisi D, Rossel RV, Terribile F, Langella G, Venezia A. A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture, Catena. 2018;167;293–304.

Pawase PP, Nalawade SM, Bhanage GB, Walunj AA, Kadam PB, Durgude AG, Patil MG. Variable rate fertilizer application technology for nutrient management: A review, Int. J. Agric. Biol. Eng. 2023;16:11–19.

Dobermann A, Blackmore S, Cook SE, Adamchuk VI. Precision farming: Challenges and future directions, in: Proc. 4th Int. Crop Sci. Congr., Brisbane Australia; 2004.

Zhong Y, Wang X, Wang S, Zhang L. Advances in spaceborne hyperspectral remote sensing in China, Geo-Spat. Inf. Sci. 2021;24:95–120.

Beluhova-Uzunova RP, Dunchev DM. Precision farming–concepts and perspectives, Zagadnienia Ekon. RolnejProblems Agric. Econ; 2019.

Singh P. A Survey on Water quality monitoring and controlling using different modality of machine learning model, in: Mach. Learn. Healthc. Secur., CRC Press. 2024:25–51.

Krantzberg G, Tanik A, do Carmo JSA, Indarto A, Ekdal A, Gurel M, pehlivanoglu Mantas E, Wang Z, Wang G, C. Zhao, Advances in water quality control, Scientific Research Publishing, Inc. USA; 2010.

Kompas T, Che TN, Quentin Grafton R, Technical efficiency effects of input controls: Evidence from Australia’s banana prawn fishery, Appl. Econ. 2004;36:1631–1641.

Taylor EN, Diele‐Viegas LM, Gangloff EJ, Hall JM, Halpern B, Massey MD, Rödder D, Rollinson N, Spears S, Sun B. The thermal ecology and physiology of reptiles and amphibians: A user’s guide, J. Exp. Zool. Part Ecol. Integr. Physiol. 2021; 335:13–44.

Pörtner H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals, Naturwissenschaften. 2001;88:137–146.

Eriegha OJ, Ekokotu PA. Factors affecting feed intake in cultured fish species: A review, Anim. Res. Int. 2017;14:2697-2709-2697–2709.

Lekang O-I. Feeding equipment and feed control systems, in: Feed Feed. Pract. Aquac., Elsevier. 2022:399–425.

Zhou C, Xu D, Lin K, Sun C, Yang X. Intelligent feeding control methods in aquaculture with an emphasis on fish: a review, Rev. Aquac. 2018;10:975–993.

Md Jamal MH. Modelling and control of the fish feeder system, Universiti Tun Hussein Onn Malaysia; 2013.

Alammar MM, Al-Ataby A. An intelligent approach of the fish feeding system, Dep. Electr. Eng. Electron. Univ. Liverp. UK; 2018.

Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH. Evaluation of different soil carbon determination methods, Crit. Rev. Plant Sci. 2009;28: 164–178.

Kuang B, Mahmood HS, Quraishi MZ, Hoogmoed WB, Mouazen AM, van Henten EJ. Sensing soil properties in the laboratory, in situ, and on-line: a review, Adv. Agron. 2012;114;155–223.

Rossel RV, Adamchuk VI, Sudduth KA, McKenzie NJ, Lobsey C. Proximal soil sensing: An effective approach for soil measurements in space and time, Adv. Agron. 2011;113:243–291.

Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, Mahmud MS, Chrysochoou M, Yang M, Vadas TM. A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives, Environ. Sci. Technol. 2022;56:13546–13564.

Mohamed ES, Saleh AM, Belal AB, Gad A. Application of near-infrared reflectance for quantitative assessment of soil properties, Egypt. J. Remote Sens. Space Sci. 2018;21:1–14.

Ottinger M, Clauss K, Kuenzer C. Aquaculture: Relevance, distribution, impacts and spatial assessments–A review, Ocean Coast. Manag. 2016;119: 244–266.

Kasampalis DA, Alexandridis TK, Deva C, Challinor A, Moshou D, Zalidis G. Contribution of remote sensing on crop models: a review, J. Imaging. 2018;4:52.

Defourny P, Bontemps S, Bellemans N, Cara C, Dedieu G, Guzzonato E, Hagolle O, Inglada J, Nicola L, Rabaute T. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world, Remote Sens. Environ. 2019;221:551–568.

Roy PS, Behera MD, Srivastav SK. Satellite remote sensing: Sensors, applications and techniques, Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 2017;87:465–472.

Angelopoulou T, Tziolas N, Balafoutis A, Zalidis G, Bochtis D. Remote sensing techniques for soil organic carbon estimation: A review, Remote Sens. 2019; 11:676.

Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J. Hyperspectral remote sensing data analysis and future challenges, IEEE Geosci. Remote Sens. Mag. 2013;1:6–36.

Hatfield JL, Gitelson AA, Schepers JS, Walthall CL. Application of spectral remote sensing for agronomic decisions, Agron. J. 2008;100:S-117-S-131.

Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A review, Remote Sens. 2020;12:3136.

Ruby P, Ahilan B, Antony C, Selvaraj S, Recent trends in aquaculture technologies, J. Aquac. Trop. 2022;37: 27–34.

Murray F, Bostock J, Fletcher D. Review of recirculation aquaculture system technologies and their commercial application; 2014.

Bogárdi I, Kuzelka RD, Ennenga WG. Nitrate contamination: exposure, consequence, and control, Springer Science & Business Media; 2013.

Bregnballe J. A guide to recirculation aquaculture: An introduction to the new environmentally friendly and highly productive closed fish farming systems, Food & Agriculture Org.; 2022.

Svobodova Z, Machova J, Poleszczuk G, Hůda J, Hamáčková J, Kroupova H. Nitrite poisoning of fish in aquaculture facilities with water-recirculating systems, Acta Vet. Brno. 2005;74:129–137.

Tavares-Dias M, Martins ML. An overall estimation of losses caused by diseases in the Brazilian fish farms, J. Parasit. Dis. 2017;41:913–918.

EW Low HA. Chase, Reducing production of excess biomass during wastewater treatment, Water Res. 1999;33:1119–1132.

Alfred O, Shaahu A, Orban DA, Egwenomhe M. An overview on understanding the basic concept of fish diseases in aquaculture, IRE J. 2020;4:83–91.

Winton JR. Fish health management, Fish Hatch. Manag. 2nd Ed. Am. Fish. Soc. Bethesda Md. 2001:559–640.

Louverdis G, Vardavoulia MI, Andreadis I, Tsalides P. A new approach to morphological color image processing, Pattern Recognit. 2002;35: 1733–1741.

Li L, Yu G, Fei S. A deep-learning real-time visual SLAM system based on multi-task feature extraction network and self-supervised feature points, Measurement. 2021;168:108403.

Mia MJ, Mahmud RB, Sadad MS, Al Asad H, Hossain R. An in-depth automated approach for fish disease recognition, J. King Saud Univ.-Comput. Inf. Sci. 2022;34:7174–7183.

Gupta S, Saluja K, Goyal A, Vajpayee A, Tiwari V. Comparing the performance of machine learning algorithms using estimated accuracy, Meas. Sens. 2022;24:100432.

Li D, Li X, Wang Q, Hao Y. Advanced Techniques for the Intelligent Diagnosis of Fish Diseases: A Review, Animals. 2022;12:2938.

Ahmed MS, Aurpa TT, Azad MAK. Fish disease detection using image based machine learning technique in aquaculture, J. King Saud Univ.-Comput. Inf. Sci. 2022;34:5170–5182.