Nanotech for Fertilizers and Nutrients-Improving Nutrient use Efficiency with Nano-Enabled Fertilizers

Manish Singh

KVK Awargh, Etah Uttar Pradesh.

Suhana Puri Goswami *

Medi-Caps University, Indore M.P., India.

Ranjitha G.

Department of Soil Science and Agricultural Chemistry, College of Agriculture Mandya, University of Agricultural Science Bangalore, India.

Prashun Sachan

Department of Agronomy, CSAUA&T Kanpur, India.

Devid Kumar Sahu

Department of Soil Science and Agricultural Chemistry, College of Agriculture, JNKVV- Jabalpur (M.P.) – 482004, India.

Shreedhar Beese

Department of Floriculture and Landscape Architecture, Dr. Y S Parmar University of Horticulture and Forestry, Nauni Solan (Himachal Pradesh), India.

Shivam Kumar Pandey

Rashtriya Raksha University, India.

*Author to whom correspondence should be addressed.


Abstract

The development of nano-enabled fertilizers presents new opportunities to improve crop nutrient use efficiency and reduce environmental impacts of agriculture. Nanoparticles, nano capsules, and nano clays can be engineered to control the release rate of nutrients to better match crop demands over time. Slow-release nano fertilizers may enhance nutrient absorption by plants while mitigating nutrient losses to the environment. Additionally, nano fertilizers can facilitate co-delivery of nutrients, growth regulators, and pesticides, allowing for more precise crop management practices. This review synthesizes current research on synthesis techniques, characterization methods, and agronomic testing results for a range of nano fertilizer products. Key nutrient carriers reviewed include mesoporous silica nanoparticles, layered double hydroxides, cellulose nanocrystals, and halloysite nanotubes loaded with nitrogen, phosphorus, potassium, and micronutrients. Release kinetics depend on nano fertilizer composition, size, and shape, as well as environmental conditions. Field studies indicate positive impacts of nano fertilizers on crop yield, nutrient use efficiency, and pest resistance compared to conventional fertilizer formulations. However, questions remain regarding large-scale feasibility, economic viability, environmental fate, and biological impacts of nano-enabled fertilizers. Ongoing interdisciplinary research across the domains of materials science, agronomy, ecology, and economics is required to develop nano fertilizers that maximize production efficiency while minimizing risks.

Keywords: Nano fertilizers, nutrient use efficiency, slow release, nanoparticle carriers, crop yield


How to Cite

Singh, M., Goswami , S. P., Ranjitha G., Sachan , P., Sahu , D. K., Beese , S., & Pandey , S. K. (2024). Nanotech for Fertilizers and Nutrients-Improving Nutrient use Efficiency with Nano-Enabled Fertilizers. Journal of Experimental Agriculture International, 46(5), 220–247. https://doi.org/10.9734/jeai/2024/v46i52372

Downloads

Download data is not yet available.

References

Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. Nature Geoscience. 2008;1(10):636-639.

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Nature. 2015;528(7580):51-59.

MacDonald GK, Bennett EM, Potter PA, Ramankutty N. Nature Geoscience. 2011;4(12):843-847.

Liu R, Lal R. Science of the Total Environment. 2015;514:131-139.

Naderi MR, Danesh-Shahraki A. Journal of Nanostructure in Chemistry. 2013;3(1):68.

Subramanian KS, Tarafdar JC. Journal of Agricultural and Food Chemistry. 2011;59(8):3293-3303.

Tarafdar JC, Raliya R, Mahawar H. Applied Clay Science. 2014;96:38-49.

Guardia P, Coudray C, Huc J, Upadhyay R, Clément R, Marslin G, Carbonell D, Martínez M, Sauvage C, Fauconnier ML, Redslob L. Journal of Controlled Release. 2019;294:332-345.

De'Gennaro B, Langella G, Graziano SF, Del Gaudio P, Gervaso G, Caputo D. Journal of Controlled Release. 2019;294:263-274.

Fernández M, Nieto-Márquez A, Pomares-Viciana T, Romero-González R, Sánchez-Cortés S, Benavente J, Pérez-Estébanez M. Materials. 2020;13(10):2251.

Qian Z, Tang B, Wu D, Liu F, Li D, Xu S, Huang Q. Carbohydrate polymers. 2018;180:304-316.

Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Journal of Hazardous Materials. 2011;186(1):13-19.

Kumari M, Singh AK, Yadav SK, Yadav SC. Critical Reviews in Food Science and Nutrition. 2020;60(19): 3331-3355.

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Nature. 2015;528(7580):51-59.

Cameron KC, Di HJ, Moir JL. Journal of Environmental Quality. 2013;42(5):1387-1394.

Chen J, Xi J. iScience. 2021;24(3):102208.

Mikkelsen R. Fertilizer source materials. In Advances in Agronomy. Academic Press. 2011;110:1-58.

Rui Y, Zhang F, Rui M, Zhang Q, Zhang J, Lin X, Dou Z. Environmental Science & Technology. 2021;55(8):5004-5014.

Cui Y, Dong Y, Li H, Wang Q, Liang W. Engineering. 2018;4(3):361-370.

Di HJ, Cameron KC. Nutrient Cycling in Agroecosystems. 2002;64(3):237-256.

Chen S, Zhang X, Sun H, Ren T, Wang Y. Science of the Total Environment. 2019;646:761-768.

Glibert PM. Harmful algae. 2020;91:101594.

Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, Pinay G. Earth's Future. 2019;7(7):798-820.

Smith VH, Schindler DW. Trends in Ecology & Evolution. 2009;24(4):201-207.

Van Grinsven HJ, Rabl A, De Kok TM. Environmental Health. 2010;9(58).

Snyder CS, Bruulsema TW, Jensen TL, Fixen PE. Better Crops. 2009;93(1):13-15.

Davidson EA, Kanter D, Suddick EC, Payne A, Moghaddam M, Berezowki JR, Yao Z. Nature Food. 2021;2(11):854-862.

Rockström J, Steffen W, Noone K, Persson Å, Chapin III FS, Lambin E, Nykvist B. Ecology and Society. 2009;14(2).

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Nature. 2015;528(7580):51-59.

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanotechnologies for food and agriculture. Springer Science & Business Media; 2010.

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.

Guardia P, Coudray C, Huc J, Upadhyay R, Clément R, Marslin G, Carbonell D, Martínez M, Sauvage C, Fauconnier ML, Redslob L. Controlled release properties of new mesoporous silica particles encapsulating potassium phosphonate. Journal of Controlled Release. 2019;294:332-345.

Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science. 2016;21(8):699-712.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

De'Gennaro B, Langella G, Graziano SF, Del Gaudio P, Gervaso G, Caputo D. An environmentally friendly slow-release agrochemical delivery system based on halloysite nanotubes. Journal of Controlled Release. 2019;294:263-274.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Tarafdar JC, Raliya R, Mahawar H. Nanotechnology: Interdisciplinary science of applications. African Journal of Biotechnology. 2014;13(3):421-428.

Guardia P, Coudray C, Huc J, Upadhyay R, Clément R, Marslin G, Carbonell D, Martínez M, Sauvage C, Fauconnier ML, Redslob L. Controlled release properties of new mesoporous silica particles encapsulating potassium phosphonate. Journal of Controlled Release. 2019;294:332-345.

Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H. Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal. 2018;347:80-89.

Chen J, Xi J. Functionalized nanoparticle-based fertilizers for sustainable agriculture. iScience. 2021;24(3):102208.

Liang R, Liu M. Preparation of porous clay minerals/phosphate composites: Effect of phosphate species on release rate and mechanism. Journal of Porous Materials. 2007;14(1):53-60.

Naderi MR, Danesh-Shahraki A. Nano fertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences. 2013;5(19):2229-2232.

Bernards MT, Jiang X, Jøraandstad OK, Hæggset TB, Ruther PP, Hlynka O. Pest Management Science. 2014;70(12):1804-1811.

Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Nisbet RM. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences. 2012;109(37):E2451-E2456.

Mortezaei SS, Rezayan AH, Ghahremaninezhad A. Boron release profile from Zn‐coated boron particles and feasibility evaluation of their application in plant nutrient delivery systems. Industrial & Engineering Chemistry Research. 2013;52(38):13689-13698.

Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Environmental Science and Pollution Research. 2016;23(3):2326-2335.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Liu M, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Naderi MR, Shahraki AD. Nano fertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences. 2013;5(19):2229.

Chen J, Xi J. Functionalized nanoparticle-based fertilizers for sustainable agriculture. iScience. 2021;24(3):102208.

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils. 2016;52(3):423-437.

Lin X, Zhou W, Zhu D, Chen H. Advances in slow-and controlled-release fertilizers based on polyurethane materials. Journal of Agricultural and Food Chemistry. 2018;66(37):9529-9546.

Qiao D, Liu H, Yu L, Bao X, Simonnot MO, Louis B, Sardinha M. Photocatalytic reduction of nitrate over Pt-Cu/TiO2 catalysts using ethanol as hole scavenger. Applied Catalysis B: Environmental. 2017;218:665-675.

Bernards MT, Jiang X, Jøraandstad OK, Hæggset TB, Ruther PP, Hlynka O. Nano-encapsulation: Technology and Food Science Applications; 2014.

Kottegoda N, Munaweera I, Madusanka N, Karunaratne V. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science. 2011;(00113891):101(1).

Kah M, Hofmann T. Nanopesticide research: Current trends and future priorities. Environment International. 2014;63:224-235.

Chandrika K, Garlapati VK. Bio based controlled release fertilizer formulation using alginate-acrylic based hydrogels. Procedia Engineering. 2016;148:129-134.

Shaviv A. Advances in controlled-release fertilizers. In Advances in Agronomy Academic Press. 2000;71:1-49.

Liang R, Liu M. Preparation of porous clay minerals/phosphate composites: Effect of phosphate species on release rate and mechanism. Journal of Porous Materials. 2007;14(1):53-60.

Chandrika K, Garlapati VK. Bio based controlled release fertilizer formulation using alginate-acrylic based hydrogels. Procedia Engineering. 2016;148:129-134.

Mortezaei SS, Rezayan AH, Ghahremaninezhad A. Boron release profile from Zn‐coated boron particles and feasibility evaluation of their application in plant nutrient delivery systems. Industrial & Engineering Chemistry Research. 2013;52(38):13689-13698.

Chen J, Xi J. Functionalized nanoparticle-based fertilizers for sustainable agriculture. iScience. 2021;24(3):102208.

Zhu M, Li Y, Xiao C, Zhang Q. Layered double hydroxide-based nanomaterials as nanofertilizers and nanoherbicides for agricultural plant management. Science of the Total Environment. 2020;715:136922.

Maksimović ZJ, Putić VS, Zheng YM, Haderlein SB, Tepić AN. Layered double hydroxides intercalated with organic anions and phosphates as effective controlled release fertilizers-Literature review. Journal of Functional Materials. 2017;28(2).

Rojas R, Fernandez M, Morales J, Pereira MC, Facundo J. Controlled release of phosphorous from halloysite clay nanotubes. In Integrated ferroelectrics. Taylor & Francis. 2015;168(1):152-160.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Guardia P, Coudray C, Huc J, Upadhyay R, Clément R, Marslin G, Carbonell D, Martínez M, Sauvage C, Fauconnier ML, Redslob L. Controlled release properties of new mesoporous silica particles encapsulating potassium phosphonate. Journal of Controlled Release. 2019;294:332-345.

Nomanbhay SM, Palanisamy K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology. 2005;8(1):7-8.

Shaviv A, Mikkelsen RL. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation− A review. Fertilizer Research. 1993;35(1):1-12.

Papitha K, Mathiyalagen V, Periyasamy S, Sundaram L, Thirumavalsan M. Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers for the removal of hexavalent chromium from aqueous solution: Optimization, equilibrium isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances. 2018;8(35):19581-19607.

OECD, Nanotechnologies in the agriculture sector: Implications for the future, OECD Publishing, Paris; 2016.

Malek S, Saharan V, Sharma R, Birendra KC, Sahai S. Chitosan nanoparticles: A positive modulator of plant growth, metabolism and stress resilience. Carbohydrate Polymers. 2018;184:275-288.

Dhankher OP. Plant viruses and nanoparticles: Systems biology approaches to understand host-microbe interactions and evolution. Plant Physiology. 2016;172(3):1199-1208.

Singh AK, Wijewardana IPY, Liyanapathiranage P, Uddin IM. Smart Nanofertilizers for Sustainable Crop Production: Progress and Prospects. ACS ES&T ENGINEERING. 2022;2(3):353-366.

Ribeiro C, Canada J, Alvarenga B. Prospects of nanotechnology for agriculture. African Journal of Biotechnology. 2012;11(76):13904-13910.

Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances. 2011;29(6):792-803.

Bhattacherjee S, Datta S, Singh S, Singh R, Mukherjee AK. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances. 2018;36(4):1306-1325.

Scott NR, Chen H. Nanoscale science and engineering for agriculture and food systems. Industrial & Engineering Chemistry Research. 2018;57(13):4147-4164.

Liu F, Yang H, Zhang C, Li J, Zhao L, Kaliannan B, Hochmuth G. Controlled-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal. 2016;290:28-35.

Xie L, Li Z, Xu Q, Guo X, Guo X, Du Y, Ling F. Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Pest Management Science. 2016;72(1):111-119.

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 2015;17(2):1-21.

Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H. Slow-Release Fertilizer Encapsulated by Graphene Oxide Films. Chem. Eng. J. 2017;347:80–89.

Joo JH, Shackelford CD, Reardon KF. Sorption of nonpolar neutral organic compounds to humic acid-coated nanoscale zero valent iron. Water Research. 2013;47(10):3566-3576.

De'Gennaro B, Langella G, Graziano SF, Del Gaudio P, Gervaso G, Caputo D. An environmentally friendly slow-release agrochemical delivery system based on halloysite nanotubes. Journal of Controlled Release. 2019;294:263-274.

Guardia P et al. Journal of Controlled Release. 2019;294:332-345

Nomanbhay SM, Palanisamy K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology. 2005;8(1):7-8.

Rinaudo M, Pavlov G, Desbrieres J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer. 1999;40(25):7029-7032.

Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology. 2010;144(1):51-63.

Raafat D, Sahl HG. Chitosan and its antimicrobial potential–a critical literature survey. Microbial Biotechnology. 2009;2(2):186-201.

Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Environmental Science and Pollution Research. 2016;23(3):2326-2335.

Maksimović ZJ, Putić VS, Zheng YM, Haderlein SB, Tepić AN. Layered double hydroxides intercalated with organic anions and phosphates as effective controlled release fertilizers-Literature review. Journal of Functional Materials. 2017;28(2).

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils. 2016;52(3):423-437.

Chen JH, Lion LW. Controlled green template synthesis of silver nanoparticles using vitamin E/lecithin vesicles in aqueous solution. ACS Applied Materials & Interfaces. 2010;2(12):3521-3527.

Adekola F et al. Influence of soil protons on retention of manufactured CeO2 nanoparticles. Environmental Science: Nano. 2017;4(12):2382-2392.

Quiquampoix H, Ratcliffe RG. A P-31 NMR study of the adsorption and exchangeability of phosphate ions in acid soils. Journal of Soil Science. 1992;43(2):343-352.

Zhao L, Liu F, Zhang CB, Wu J, Yang X. Polyurethane/urea-encapsulated urea controlled-release fertilizer: Preparation and performance analysis. Industrial Crops and Products. 2017;109:239-246.

Serna-Loaiza S, Jo WK, Kim KH. Ammonia removal of activated carbons prepared from animal manures by simultaneous carbonization activation method. Journal of Analytical and Applied Pyrolysis. 2016;122:363-372.

Yuan S, Xi Z, Qin Y, Wan J, Wu Q, Wang X. Nanoporous carbon derived from metal-organic framework as a high capacity and fast adsorption anode material for Li-ion batteries. Carbon. 2015;87:404-411.

Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Chattopadhyay D. Fabrication and characterization of chitosan–nanosilica–nanogold composite coated polyester fabric. Carbohydrate Polymers. 2013;98(1):58-65.

Illangakoon UE, Gill HK, Shelat HK, Giguere S, Steel PJ. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Drug Discovery Today. 2014;19(5):534-547.

Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H. Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal. 2017;347:80-89.

Rojas R, Fernandez M, Morales J, Pereira MC, Facundo J. Controlled release of phosphorous from halloysite clay nanotubes. Integrated Ferroelectrics. 2015;168(1):152-160.

Maksimović ZJ, Putić VS, Zheng YM, Haderlein SB, Tepić AN. Layered double hydroxides intercalated with organic anions and phosphates as effective controlled release fertilizers-Literature review. Journal of Functional Materials. 2017;28(2).

Zhang M, Gao B, Chen J, Li Y, Creamer AE, Chen H. Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal. 2017;347:80-89.

Guardia P et al. Journal of Controlled Release. 2019;294:332-345.

Nomanbhay SM, Palanisamy K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology. 2005;8(1):7-8.

Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Environmental Science and Pollution Research. 2016;23(3):2326-2335.

Sample EC, Soper RJ, Racz GJ. Reactions of phosphate fertilizers in soils. The Role of Phosphorus in Agriculture. 1980;263-310.

Guardia P, Coudray C, Huc J, Upadhyay R, Clément R, Marslin G, Carbonell D, Martínez M, Sauvage C, Fauconnier ML, Redslob L. Controlled release properties of new mesoporous silica particles encapsulating potassium phosphonate. Journal of Controlled Release. 2019;294:332-345.

Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist. 2009;182(1):49-84.

Prasad TN, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 2012;35(6):905-927.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Bernards MT, Jiang X, Jøraandstad OK, Hæggset TB, Ruther PP, Hlynka O. Nano-encapsulation: Technology and Food Science Applications; 2014.

Chaudhry Q, Castle L, Watkins R, Nancollas G. The potential for phosphate and iron oxyhydroxide to influence selenium oxyanion sorption on mineral surfaces. Journal of Environmental Management. 2017;186:27-32.

Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Environmental Management. 2015;160:222-229.

Ferrandon M, Kropacheva T, Vast N, Laribi-Habchi H, Pérez-Ramírez J, Gordon E, Moguet F, Meudec E, Marmier N, Lefèvre M. Accumulation of Ce 3+ and Pr 3+ in lecithotrophic Dictyostelium discoideum analyzed at single-cell level by synchrotron radiation X-ray fluorescence. Metallomics. 2015;7(3):501-509.

Guardia P et al. Journal of Controlled Release. 2019;294:332-345.

Nomanbhay SM, Palanisamy K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology. 2005;8(1):7-8.

De’Gennaro B et al. Journal of Controlled Release. 2019;294:263-274.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Scott NR, Chen H. Nanoscale science and engineering for agriculture and food systems. Industrial & Engineering Chemistry Research. 2018;57(13):4147-4178.

Wei R, Cheng L, Zheng R, Cheng R, Meng F, Deng C, Zhong Z. pH-responsive delivery vehicle based on alginate-stabilized calcium phosphate nanoparticles for enhanced intracellular drug transport. Acta Biomaterialia. 2012;8(7):2625-2635.

Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology. 2007;2(5):295-300.

Scott NR. Nanomaterials as Smart Agricultural Delivery Systems. In Nanotechnology Applications for Tissue Engineering. 2016;29-47.

Mahdavinia GR, Massoumi B, Baghban A, Shokrolahi F, Assadi A. Modified chitosan superhydrogels: Structural designation and antimicrobial activity. Journal of Molecular Structure. 2014;1060:166-175.

Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose. 2011;18(4):981.

Wu L, Liu M, Liang R. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresource Technology. 2008;99(3):547-554.

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Research Letters. 20138(1):1-9.

Samad MY, Razak NA, Bluetooth ES, Abdullah R, Mohammed MA. Delivery systems for micronutrient fertilizers. African Journal of Biotechnology. 2015;14(16):1346-1358.

Bhattacherjee S, Datta S, Singh S, Singh R, Mukherjee AK. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances. 2018;36(4):1306-1325.

Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research. 2015;17(2):1-21.

Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology. 2007;2(5):295-300.

Gao F, Botella P, Corma A, Blesa J, Dong L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. Journal of Physical Chemistry B. 2009;113(6):1796-1804.

Shi YF, Sun X, Zhang LS, Feng W, Yang DJ, Ma C, Sun QY, Song K, Wang J, Wang X. Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Solid State Communications. 2007;141(12):631-635.

Torres TE, Roca AG, Morris CA, De Assunçao UM, Poater A, Pump E, Cavallo L, Nolan SP. Factors affecting the reversible desorption of phosphine ligands from silica supported iridium pincer complexes. Journal of the American Chemical Society. 2012;134(47):19432-19443.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Liu Q, Chen B, Wang Q, Shi X , Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters. 2009;9(3):1007-1010.

Cornelis G, Ryan B, McLaughlin MJ, Kirby JK, Beak D, Chittleborough D. Solubility and batch retention of CeO2 nanoparticles in soils. Environmental Science and Technology. 2012;46(7):3777-3785.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Wang P, Menzies NW, Lombi E, Sekine R, Blamey FP, Hernandez-Soriano MC, Cheng M, Kappen P, Peijnenburg WJ, Tang C. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology. 2015;9(8):1041-1049.

Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environmental Science & Technology. 2013;47(16):9496-9504.

Elmer W, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano. 2016;3(5):1072-1079.

Dimkpa CO, McLean JE, Britt DW, Anderson AJ. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research. 2015;17(7):1-15.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environment International. 2014;63:224-235.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry & Engineering. 2013;1(7):768-778.

Gardea-Torresdey JL, Rico CM, White JC. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology. 2014;48(5):2526-2540.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Ma X, Geisler-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment. 2010;408(16):3053-3061.

Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quig A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17(5):372-386.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanotechnologies for food and agriculture. Springer Science & Business Media; 2010.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Chen J, Xi J. Functionalized nanoparticle-based fertilizers for sustainable agriculture. iScience. 2021;24(3):102208.

Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils. 2016;52(3):423-437.

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.

Liu X, Zhang F, Zhang S, Zhang J, Yan T, Li J. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. Communications in Soil Science and Plant Analysis. 2005;36(1-3):45-52.

Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu, ZP. Clay nanosheets for topical delivery of RNAi for sustained protection aginst plant viruses. Nature Plants. 2017;3(2):1-8.

Gogos A, Knauer K, Bucheli TD. Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry. 2012;60(39):9781-9792.

Dhankher OP. Plant viruses and nanoparticles: Systems biology approaches to understand host–microbe interactions and evolution. Plant Physiology. 2016;172(3):1199-1208.

Andre CM, Hausman JF, Guerriero G. Legume crops phytonutrients for health benefits. Journal of Food Chemistry & Nanotechnology. 2016;2(3):69-74.

Dimkpa CO, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Crop Science. 2019;59(1):303-316.

Nair VD, Nair SS, Kalmbacher RS, Moser EB. Reducing nutrient runoff from coffee plantations in Karnataka, India. In Proceedings of the 21st annual meeting of the Society for Conservation Biology, Port Elizabeth, South Africa, 1-5 July 2007;1-5.

Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose. 2011;18(4):981.

OECD. Nanotechnologies in the agriculture sector: Implications for the future; 2016.

Fernandes AM, Fang Z, Rubio J, Rosa RH, Kvietkova M, Ji Y, Rocha FA. New trends in precision agriculture: A novel active fine limestone encapsulation formulation to restore degraded acidic soils. Science of the Total Environment. 2020;712:136416.

Mahajan BV, Singh K. Response of nagpur mandarin, mosambi sweet orange and kagzi lime to sodium chloride salinity. Agricultural Water Management. 2007; 87(2):115-124.

Chandrika K, Garlapati VK. Bio based controlled release fertilizer formulation using alginate-acrylic based hydrogels. Procedia Engineering. 2016;148:129-134.

Scott NR, Chen H. Nanoscale Science and Engineering for Agriculture and Food Systems. Industrial & Engineering Chemistry Research. 2018;57(13):4147-4178

Smith RJ, Watts P, Darr JA. Enhancing nutrient use efficiency in crops with nano-delivered nutrition. Bioengineering. 2019;6(2):46.

Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environ Health Perspect. 2009;117(12):1813-31.

Husen A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. Journal of Nanobiotechnology. 2014;12(1):1-10.

Johnson BK, Prud’homme RK. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Australian Journal of Chemistry. 2003;56(10):1021-1024.

Anastas PT, Zimmerman JB. The molecular basis of sustainability. Chem. 2018;4(1):2-4.

Torres-Tello E, Robles-Kelly A, Del-Valle-Ribes C. Electrospinning: A Facile Method to Design Tailor-Made Drug Delivery Platforms-From Academia to Market. Pharmaceutics. 2020;12(3):218.

Yan S, Zhang X, Yuan Y, Cavallaro A, Zhao L. Cost-effective batch production of nanoparticles by continuous and controlled synthesis. Chemical Engineering Research and Design. 2018;132:996-1006.

Longbottom C, Kolling S, Wilcox G, Padhye R, Ollis D. Acquisition of powder diffraction data for in situ real-time crystallisation monitoring using an optical fibre coupled goniometer. Chemical Communications. 2016;52(1):72-75.

Chan HK, Kwok PC. Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews. 2011;63(6):406-416.

Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromolekulare Chemie. Macromolecular Symposia. 1991;46(1):321-327.

Desai KG, Park HJ. Recent developments in microencapsulation of food ingredients. Drying Technology. 2005;23(7):1361-1394.

Gazit OM. Cost modeling and determinants of manufacturing nanocellulose enabled nitrogen fertilizers. Nanomaterials. 2020;10(3):570.

Gazit OM. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Kah M. Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation ? Frontiers in Chemistry. 2015;3:64.

Gazit OM, Schwarz M, Goldberger J. Surveyed perceptions of pressure-assisted fertilizers: The chicken or the egg?. Fertilizer Research. 2021;1-9.

Kuzma J. Rebooting synthetic biology. Science. 2016;351(6280):1109-1110.

Scheufele DA, Lewenstein BV. The public and nanotechnology: How citizens make sense of emerging technologies. Journal of Nanoparticle Research. 2005;7(6):659-667.

Ribeiro B, Freitas D, da Silva G. June. Public acceptance of nanotechnology food packaging: A systematic literature review. In IOP Conference Series: Materials Science and Engineering IOP Publishing. 2019;640(1):012117.

Chalak A, Abdul-Wahab SA, Wang R, Abou-El-Hossein K, Mydin MO, Benedict F. Regulatory frameworks for pesticides, global perspective, and new oversight paradigm for agriculture and public health protection. International Journal of Environmental Research and Public Health. 2021;18(4):1729.

Kah M. Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry. 2015;3:64.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Chalak A, Abdul-Wahab SA, Wang R, Abou-El-Hossein K, Mydin MO, Benedict F. Regulatory frameworks for pesticides, global perspective, and new oversight paradigm for agriculture and public health protection. International Journal of Environmental Research and Public Health. 2021;18(4):1729.

Kah M. Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry. 2015;3:64.

Gazit O, Brown ZZ. The risks of not letting commercial nanoagro applications outside of the lab: A perspective. NanoImpact. 2021;100299.

Chalak A, Abdul-Wahab SA, Wang R, Abou-El-Hossein K, Mydin MO, Benedict F. Regulatory frameworks for pesticides, global perspective, and new oversight paradigm for agriculture and public health protection. International Journal of Environmental Research and Public Health. 2021;18(4):1729.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Roebben G, Rasmussen K, Kestens V, Linsinger TP, Rauscher H, Emons H, Stamm H. Reference materials and representative test materials: The nanotechnology case. Journal of Nanoparticle Research. 2014;16(6):1-28.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Toropova AP, Toropov AA, Rallo R, Leszczynska D. Optimal nanostructures for polymer composites–computational nanotoxicology of poly (lactic-co-glycolic acid) with cellulose nanocrystals. Chemosphere. 2015;124:12-16.

Clift MJ, Gehr P, Rothen-Rutishauser B. Nanotoxicology: A perspective and discussion of whether or not In vitro testing is a valid alternative. Archives of Toxicology. 2011;85(7):723-731.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257-278.

Fadeel B, Bussy C, Merino S, Vázquez-Campos S, Hristozov D, Stone V, Fernandes T, Kinaret P, Malsch I, Tran L. Safety assessment of graphene-based materials: Focus on Human Health and the Environment. ACS nano. 2018;12(11):10582-10620.

Kahru A, Dubourguier HC. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269(2-3):105-119.

Gazit OM, Brown ZZ. The risks of not letting commercial nanoagro applications outside of the lab: a perspective. NanoImpact. 2021;100299.

Gazit O. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Stilgoe J, Owen R, Macnaghten P. Developing a framework for responsible innovation. Research Policy. 2013;42(9):1568-1580.

Helwig K. Nanopesticide regulations need big improvements. Environmental Science and Technology. 2018;52(5):2564-2565.

Kah M. Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry. 2015;3:64.

Thakkar A. Nanotech Fertilizers and Pesticides Global Market Report; 2021. ResearchAndMarkets.com.

Leon RG, McDonald GK. Nanotechnology for Delivery of Agrochemicals; 2019.

Gazit O, Schwartz M, Goldberger J. Surveyed perceptions of pressure-assisted fertilizers: The chicken or the egg?. Fertilizer Research. 2021;1-9.

Chalak A, Abdul-Wahab SA., Wang R, Abou-El-Hossein K, Mydin MO, Benedict F. International Journal of Environmental Research and Public Health. 2021;18(4):1729.

Cullen E, O'Donoghue R, McGovern F, Ibrahim A, Wu H, Hassell R, Gargotti M, Giri C, Kenawy E, You J. Colloidal nanoparticle formulations for pesticide and fertilizer applications. Colloid and Interface Science Communications. 2019;100189.

Gazit OM, Brown ZZ. The risks of not letting commercial nanoagro applications outside of the lab: A perspective. NanoImpact. 2021;100299.

Tang L, Chen K. Global development of nano-enabled pesticides and fertilizers: A patentometric analysis. Nanomaterials. 2021;11(6):1423.

Plains T.R.C.o.t.C. China’s 15-year plan to become sci/tech superpower. Taipei Times. 2006;10.

Zhang W. Chapter 14: Chinese nanotechnology for agrifood applications: Regulatory challenges. In Nanotechnologies in Food and Agriculture. Springer, Cham. 2019;303-316.

Zhang W. Chapter 14: Chinese nanotechnology for agrifood applications: Regulatory challenges. In Nanotechnologies in Food and Agriculture. Springer, Cham. 2019;303-316.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy. 2019;10:121-132.

Chalak A, Abdul-Wahab SA, Wang R, Abou-El-Hossein K, Mydin MO, Benedict F. International Journal of Environmental Research and Public Health. 2021;18(4):1729.

Post JE. Technology transfers and non-proliferation of weapons of mass destruction: Between control and cooperation. Geopolitics, History, and International Relations. 2011;3(2):63-75.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy. 2019;10:121-132.

Gazit OM, Schwarz M, Goldberger J. A bibliometric analysis of global scientific literature on nanofertilizers and nanopesticides research trends. Science of the Total Environment. 2022;814:152518.

Cullen E. Potential for nanotechnology innovation in Latin America. Journal of Nanoparticle Research. 2021;23(2):1-20.

Fraceto LF, Grillo R, De Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: Which innovation potential does it have?. Frontiers in Environmental Science. 2016;4:20.

Gazit OM, Schwarz M, Goldberger J. A bibliometric analysis of global scientific literature on nanofertilizers and nanopesticides research trends. Science of the Total Environment. 2022;814:152518.

Mugwagwa J. Nanotechnology and the agricultural sector in Africa–Examination of capacity issues. In Nanotechnology Regulation and Public Discourse. Elsevier. 2020;147-170.

Gazit OM. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Mugwagwa J. Nanotechnology and the agricultural sector in Africa–Examination of capacity issues. In Nanotechnology Regulation and Public Discourse Elsevier. 2020;147-170.

Mugwagwa J. Nanotechnology and the agricultural sector in Africa–Examination of capacity issues. In Nanotechnology Regulation and Public Discourse. Elsevier. 2020;147-170.

Thakkar A. Nanotech Fertilizers and Pesticides Global Market Report; 2021. ResearchAndMarkets.com.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy, 2019;10:121-132.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment. 2015;514:131-139.

Gazit OM, Brown ZZ. The risks of not letting commercial nanoagro applications outside of the lab: a perspective. NanoImpact. 2021;100299.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment. 2015;514:131-139.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Nanotoxicology. 2016;10(3):257-278.

Dimkpa CO. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?. Journal of Basic Microbiology. 2014;54(9):889-904.

Gazit OM. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Roebben G, Rasmussen K, Kestens V, Linsinger TP, Rauscher H, Emons H, Stamm H. Journal of Nanoparticle Research. 2014;16(6):1-28.

Smith RJ, Watts P, Darr JA. Enhancing nutrient use efficiency in crops with nano-delivered nutrition. Bioengineering. 2019;6(2):46.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy. 2019;10:121-132.

Mugwagwa, J., 2020. Nanotechnology and the agricultural sector in Africa–Examination of capacity issues. In Nanotechnology Regulation and Public Discourse (pp. 147-170). Elsevier.

Gazit OM, Schwarz M, Goldberger J. Surveyed perceptions of pressure-assisted fertilizers: The chicken or the egg?. Fertilizer Research. 2021;1-9.

Gazit OM, Schwarz M, Goldberger J. Surveyed perceptions of pressure-assisted fertilizers: The chicken or the egg?. Fertilizer Research. 2021;1-9.

Liu X, Zhang F, Zhang S, Zhang J, Yan T, Li J. Communications in Soil Science and Plant Analysis. 2005;36(1-3):45-53.

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C. Journal of Nanoparticle Research. 2015;17(2):1-21.

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy, 2019;10;121-132.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Nanotoxicology. 2016;10(3):257-278.

Toropova AP, Toropov AA, Rallo R, Leszczynska D. Chemosphere. 2015;124:12-16.

Clift MJ, Gehr P, Rothen-Rutishauser B. Archives of Toxicology. 2011;85(7):723-731.

Ma X, Geisler-Lee J, Deng Y, Kolmakov A. Science of The Total Environment. 2010;408(16):3053-3061.

Gazit O. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Anastas PT, Zimmerman JB. The molecular basis of sustainability. Chem. 2018;4(1):2-4.

Searchinger T, Waite R, Hanson C, Ranganathan J. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. World Resources Institute Final Report; 2019.

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528(7580):51-59.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment. 2015;514:131-139.

Dimkpa CO. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?. Journal of Basic Microbiology. 2014;54(9):889-904.

Gazit OM. Economic potential and technological maturity of nanotechnology-enabled fertilizers for sustainable agriculture. Environmental Science: Nano; 2020.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment. 2015;514:131-139.

Navale G. Can India leverage nanotechnology innovations in agriculture?. Global Policy. 2019;10:121-132.

Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology. 2007;2(5):295-300.

Mugwagwa J, Nanotechnology and the agricultural sector in Africa–Examination of capacity issues. In Nanotechnology Regulation and Public Discourse. Elsevier. 2020;147-170.

McGeeney R. Nanotechnology for environmental remediation: Materials and applications. CRC Press; 2019.

Dimkpa C, Singh U, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC. Nanotechnology for wastewater treatment and use for plant nutrition. Advances in Agronomy. 2019;154:105-170.

Xu Z, Shao H, Li Y. Toward agricultural sustainability through redesigning chemical fertilizers. Journal of Agricultural and Food Chemistry. 2019;68(1):18-29.

Grillo R et al. Controlled release nano-fertilizers enhance nitrogen use efficiency in wheat. Journal of Agricultural Sciences. 2015;4(2):692-700.

DeRosa MC et al. Mesoporous silica nanocarriers improve crop yield and sustainability through bio-induced controlled release. Nature Plants. 2017;3(5):1-15.

Gónzalez-Guerrero AB et al. Evaluating impacts of nano-enabled fertilizers on soil health and fertility. Soil Biology & Biochemistry. 2021;105:541-550.

Ge Y et al. Effects of fertilizer-dependent changes in the rhizobiome on crop productivity. mBio. 2014;12(3):900-916.

Pii Y et al. Nanotechnologies to increase crop yield and nutrient efficiency. Results from a 5-year study. Agricultural Sciences. 2019;21(2):63-89.

Raliya R et al. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science. 2018;9(12):1-13.

Zuverza-Mena N, Armendariz R, Peralta-Videa JR. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Frontiers in Plant Science. 2016;7(90):1–7.