Phenology of Apple Cultivars with Different Chilling Requirements

José Luiz Petri *

High Valley of the Rio do Peixe University (UNIARP), Caçador, Brazil.

Cristhian Leonardo Fenili

State University of Santa Catarina, Agroveterinary Sciences Center, Lages, Brazil.

Caroline de Fátima Esperança

High Valley of the Rio do Peixe University (UNIARP), Caçador, Brazil.

*Author to whom correspondence should be addressed.


Under mild climate conditions where chilling requirements are not met, the different phenological stages tend to extend and vary according to the year and chilling intensity. Knowledge on the phenological stages becomes important for the management of some cultural practices such as fruit thinning and phytosanitary treatments. The phenology of ‘Condesa’, ‘Imperatriz’, ‘Fred Hough’, ‘Gala’, ‘Fuji Suprema’ and ‘Baronesa’ apple cultivars with different chilling requirements was studied for a period of 20 years. The method employed made it possible to analyze the evolution of the different phenological stages, allowing the chronological determination of their development. The results suggest adaptability of the different cultivars in the same region, highlighting the influence of environmental factors. The duration of the different phenological stages varied according to the chilling requirements of each cultivar, being directly influenced by climatic factors.

Keywords: Malus domestica, climate variability, phenological stages, chilling requirement

How to Cite

Petri , J. L., Fenili , C. L., & Esperança, C. de F. (2024). Phenology of Apple Cultivars with Different Chilling Requirements. Journal of Experimental Agriculture International, 46(5), 330–338.


Download data is not yet available.


Celton J-M Martinez, S Jammes MJ Bechti, A Salvi, S Deixar, JM Costes E. Deciphering the genetic determinism of bud phenology in apple progenies: A new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytologist. 2011; 192:378-392. DOI:

Gottschalk C, Van Nocker S. Diversity in seasonal bloom time and floral development among apple species and hybrids. Journal of the American Society for Horticultural Science.2013;138:367-374. DOI:

Hauagge R, Cummins JN. Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. Journal of the American Society for Horticultural Science. 1991;116:100-106. DOI:

Petri JL, Hawerroth FJ, Leite GB, Couto M, Francescatto P. Apple phenology in subtropical climate conditions. In: Zhang X. (Ed.). Phenology and climate change. Rijeka (Croácia): InTech. 2012:195-216,


Ramírez F, Davenport TL. Apple pollination: A review. Scientia Hortic. 2013; 162:188–203. DOI:

Fujisawa M, Kobayashi K. Apple (Malus pumila var. domestica) phenology is advancing due to rising air temperature in northern Japan. Global Change Biology, Oxford. 2010;16:2651-2660 DOI:

Guédon Y, Legave JM. Analyzing the time-course variation of apple and pear tree dates of flowering stages in global warming context. Ecological Modelling, Amsterdam. 2008;219:189-100. DOI:

Oliveira IVM, Lopes PRC, Silva-Matos RRS, Cavalcante IHL. Fenologia da macieira cv. ‘Condesa’ no Vale do São Francisco. Revista Ciências Agrarias, Belém. 2013;36:23-30.

Demarée GR, Rutishauser T. Origins of the word “phenology”. Eos Transactions American Coeo physical union. DOI:10.1029, 2009.

Skinner JE. Delayed foliation. Deciduous Fruit Grower. 1964;4:195-197. Isnn 0302-7074.

Saure MC. Dormancy release in deciduous fruit trees. Horticultural Review. 1985;7: 239-299. Isnn 0163-7851. DOI:

Petri JL, Palladini LA, Shuck E, Ducroquet JHHJ, Matos CS. Dormência e indução da brotação de fruteiras de clima temperado. Florianópolis: EPAGRI.1996;110.

Petri JL, Leite GB. Consequences of Insufficient Winter Chilling on Apple Tree Bud-break. Acta Horticulturae. 2004;662: 53-60. DOI:10.17660/ActaHortic.2004.662.4

Saraiva I. Fenologia das Pomóideas. Frutos, 72/73. 1976:25-44.

Bullock SH, Solis-Magallanes JA. Phenology of canopy trees of tropical deciduous forest in México. Biotropica. 1990;22:384-395. DOI:

Petri JL, Hawerroth FJ, Fazio G, Francescatto P, Leite GB. Advances in fruit crop propagation in Brazi and worldwide-apple trees. Revista Brasileira de Fruticultura. 2019;41:e-004 DOI:

Pasa MDS, Felippeto J, Nava G, Silva CPD, Brighenti AF, Ciotta MN. Performance of ‘Fuji Suprema’ apple trees treated with budbreak promoters, in São Joaquim-SC. Revista Brasileira de Fruticultura. 2018;40:e325. DOI:

Gariglio N, Mendow M, Weber M, Favaro MA, Gonzalez-Rossia D, Pilatti RA. Phenology and reproductive traits of peaches and nectarines in central-east Argentina. Revista Scientia Agricola. 2009; 66:757-763. DOI:

Erez A, Faust M, Line M. Chang in water status in peach buds on induction, development and release from dormancy. Scientia Horticulturae. 1998;73:111-123. DOI:

Dennis JR FG. Dormancy: Manifestations and causes. In: Handbook of plant and crop physiology. CRC Press. 2001:183-202.

Labuschagne IF, Louw JH, Schmidt K, Sadie A. Genetic variation in chilling requirement in apple progeny. J Am Soc Hortic Sci. 2002;127(4):663–672.


Powell LE. The chilling requirement in apple and its role in regulating time of flowering in spring in cold-winter climates. Acta Hortic. 1986;(179):129–140. DOI:

Belhassine F, Pallas B, Pierru-Bluy S, Martinez S, Fumey D, Costes E. A genotype-specific architectural and physiological profile is involved in the flowering regularity of apple trees. Tree Physiology. 2022;42(11):2306-2318. DOI:

Gottschalk C, Van Nocker S. Diversity in seasonal bloom time and floral development among apple species and hybrids. Journal of the American Society for Horticultural Science. 2013;138(5):367-374.


Guitton B, Kelner JJ, Velasco R, Gardiner SE, Chagne D, Costes E. Genetic control of biennial bearing in apple. Journal of Experimental Botany. 2012;63:131-149 DOI:10.1093/jxb/err261

Haberman A, Ackerman M, Crane O, Kelner JJ, Costes E, Samach A. Different flowering response to various fruit loads in apple cultivars correlates with degree of transcript reaccumulation of a TFL 1‐encoding gene. The Plant Journal. 2016; 87(2):161-173. DOI:10.1111/tpj.13190

Hanke M-V, Flachowsky H, Peil A, Hättasch C. No flower no fruit—Genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics. 2007; 1:1-20.

Heide OM, Rivero R, Sønsteby A. Temperature control of shoot growth and floral initiation in apple (Malus x domestica Borkh.). CABI Agriculture and Bioscience. 2020;1(1):1-15.


Kofler J, Milyaev A, Capezzone F, STOJNI S, MICIC N. High crop load and low temperature delay the onset of bud initiation in apple. Scientific Reports. 2019; 9:17986.


Kofler J, Milyaev A, W€Urtz B, Pfannstiel J, Flachowsky H, W€Unsche JN. Proteomic differences in apple spur buds from high and non- cropping trees during floral initiation. Journal of Proteomics. 2022;253: 104459. DOI:

Bernad D. Characterization of Some Self-compatible Almonds. II. Flower Phenology and Morphology. HortScience. 1995;30(2): 321. DOI:

Ebert A, Petri JL, Bender RJ, Braga HJ. First experiences with chill units models is southern Brazil. Acta Horticulturae, The Hague. 1986;184:9-96. DOI:10.17660/ActaHortic.1986.184.8

Sezerino AA. (Org.). Sistema de produção para a cultura da macieira em Santa Catarina. Florianópolis: Epagri. (Epagri. Sistema de Produção 50). 2018; 136.

Putti GL, Petri JL. Estádios fenológicos da macieira nas cultivares Gala, Fuji e Golden Delicious. Agropecuária Catarinense. 2002;15(3):22-25.

Francescatto P, Petri JL, Racsko J, Couto M, Silva AL. Avaliação fenológica das diferentes estruturas de frutificação das macieiras ‘Gala’ e ‘Fuji’ na região de Caçador-SC. Revista Brasileira de Fruticultura. 2015;37(4):913-923. DOI: