Enhancing Crop Productivity through Nanotechnology: A Comprehensive Review of Strategies and Results

Nitesh Kumar Singh

Department of Soil Science and Agricultural Chemistry, Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, Sasaram, Bihar, India.

Avinash Kumar Rai *

KVK Ghazipur Affiliated NDUAT Kumarganj, Ayodhya, India.

*Author to whom correspondence should be addressed.


Abstract

Nanotechnology has emerged as a promising approach to address the challenges of increasing crop productivity and ensuring global food security. This comprehensive review examines the various strategies and results of applying nanotechnology in agriculture to enhance crop productivity. We discuss the use of nanomaterials, such as nanoparticles, nanofertilizers, nanopesticides, and nanosensors, in improving nutrient management, pest control, disease management, and crop monitoring. The review also highlights the potential of nanobiotechnology in crop improvement through targeted gene delivery, genetic engineering, and plant transformation. Furthermore, we explore the application of nanomaterials in seed priming, seed coating, and seed germination enhancement. The environmental and safety aspects of using nanotechnology in agriculture are also discussed, along with the challenges and future prospects. This review provides valuable insights into the current state-of-the-art and future directions of nanotechnology in enhancing crop productivity, promoting sustainable agriculture, and ensuring food security.

Keywords: Nanotechnology, nutrient management, pest, sustainable agriculture, environmental


How to Cite

Singh, N. K., & Rai, A. K. (2024). Enhancing Crop Productivity through Nanotechnology: A Comprehensive Review of Strategies and Results. Journal of Experimental Agriculture International, 46(5), 435–458. https://doi.org/10.9734/jeai/2024/v46i52395

Downloads

Download data is not yet available.

References

United Nations, Department of economic and social affairs, population division. World Population Prospects 2019: Highlights. United Nations; 2019.

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: The challenge of feeding 9 billion people. Science. 2010;327(5967):812-818.

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418(6898):671-677.

Pretty J. Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences. 2008;363(1491):447-465.

Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology. 2017;8:1014.

National Nanotechnology Initiative. What is nanotechnology?; 2021. Available: https://www.nano.gov/nanotech-101/what/definition

Fraceto LF, Grillo R, De Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science. 2016;4:20.

Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports. 2017;15:11-23.

DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91-91.

Liu R, Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 2015;514:131-139.

Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research. 2016;14(1):0902.

Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae. 2014;175:1-8.

Qureshi A, Singh DK, Dwivedi S. Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences. 2018;7(2):3325-3335.

Singh MD, Gautam C, Patidar OP, Meena HM, Prakasha G, Vishwajith. Nano fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences. 2017;9(7):3831-3833.

Achari GA, Kowshik M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. Journal of Agricultural and Food Chemistry. 2018;66(33):8647-8661.

Dimkpa CO, Bindraban PS. Fortification of micronutrients for efficient agronomic production: A review. Agronomy for Sustainable Development. 2016;36(1):7.

Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science. 2016;21(8):699-712.

Panpatte DG, Jhala YK, Shelat HN, Vyas RV. Nanoparticles: The next generation technology for sustainable agriculture. In Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi. 2016;289-300.

Sarlak N, Taherifar A, Salehi F. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. Journal of Agricultural and Food Chemistry. 2014;62(21):4833-4838.

Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide. 2016;61:10-19.

Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano. 2019;6(1):41-59.

Kopittke PM, Lombi E, Wang P, Schjoerring JK, Husted S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano. 2019;6(12):3513-3524.

Iavicoli I, Leso V, Beezhold DH, Shvedova AA. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology. 2017;329:96-111.

Jośko I, Oleszczuk P. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere. 2013;92(1):91-99.

Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials. 2017;322:2-16.

Grillo R, Abhilash PC, Fraceto LF. Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology. 2016;16(1):1231-1234.

El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology. 2021;16(3):344-353.

Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF. Application of poly (Epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials. 2014;268:207-215.

Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection. 2012;35:64-70.

Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry. 2018;66(26):6504-6512.

Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB. Integrated approach of agri-nanotechnology: Challenges and future trends. Frontiers in Plant Science. 2017;8:471.

Chhipa H. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters. 2016;15(1):15-22.

Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology. 2012;94(2):287-293.

Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology. 2018;13(8):677-684.

Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N. Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science. 2018;91(1):1-15.

Kah M, Beulke S, Tiede K, Hofmann T. Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology. 2013;43(16):1823-1867.

Ragaei M, Sabry AKH. Nanotechnology for insect pest control. International Journal of Science, Environment and Technology. 2014;3(2):528-545.

Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 2019;24(14):2558.

Kumari A, Yadav SK. Nanotechnology in Agri-food sector. Critical Reviews in Food Science and Nutrition. 2014;54(8):975-984.

Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry. 2016;64(7):1447-1483.

Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection. 2012;35:64-70.

Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. Nanotechnology for plant disease management. Agronomy. 2018;8(12):285.

Servin AD, White JC. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. 2016;1:9-12.

Wang X, Liu X, Chen J, Han H, Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798-806.

Elmer WH, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano. 2016;3(5):1072-1079.

Malandrakis AA, Kavroulakis N, Chrysikopoulos CV, Batzipetrou P. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment. 2021;794:148377.

Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40(1):53-58.

Mishra S, Singh HB. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology. 2015;99(3):1097-1107.

Mohammadipanah F, Farzaneh M. An overview of the application of nanomaterials in managing fungal plant diseases. Chemosphere. 2021;275:129950.

Elmer WH, De La Torre-Roche R, Pagano L, Majumdar S, Zuverza-Mena N, Dimkpa C, White JC. Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease. 2018;102(7):1394-1401.

Dimkpa CO, McLean JE, Britt DW, Anderson AJ. Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Industrial Biotechnology. 2012;8(6):344-357.

Liang Y, Sun W, Zhu YG, Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution. 2007;147(2):422-428.

Pérez-de-Luque A. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science. 2017;5:12.

Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances. 2011;29(6):792-803.

Hayles J, Johnson L, Worthley C, Losic D. Nanopesticides: A review of current research and perspectives. New Pesticides and Soil Sensors. 2017;193-225.

Campos EV, De Oliveira JL, Fraceto LF. Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: A review. Advanced Science, Engineering and Medicine. 2014;6(4):373-387.

Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I. Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research. 2013;15(9):1-26.

Panpatte DG, Jhala YK, Shelat HN, Vyas RV. Nanoparticles: The next generation technology for sustainable agriculture. In Singh DP, Singh HB, Prabha R. (Eds.), Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications. Springer India. 2016;289-300. Available: https://doi.org/10.1007/978-81-322-2644-4_18

Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry. 2016;64(7):1447-1483.

Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Van Den Brink PJ. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry. 2014;62(19):4227-4240.

Grillo R, Fraceto LF, Amorim MJ, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials. 2021;404:124148.

Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Landry MP. DNA nanostructures coordinate gene silencing in mature plants. Proceedings of the National Academy of Sciences. 2020;117(2):953-960.

Singh A, Singh NB, Afzal S, Singh T, Hussain I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science. 2018;53(1):185-201.

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Landry MP. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology. 2019;14(5):456-464.

Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology. 2018;36(9):882-897.

Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Strano MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology. 2019;14(5):447-455.

Zhang H, Cao Y, Zhang H, Xu C, Xiao J, Lian J, Ye T. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. The Plant Journal. 2021;105(4):880-896.

Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Zeng Z. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants. 2017;3(12):956-964.

Wang W, Xu C, Zhou X, Li W, Chen G, Tian H, Ding Y. Advances in nanotechnology-based delivery systems for CRISPR/Cas genome editing. Advanced Science. 2021;8(10):2003331.

Kelley JL, Ozment TR, Li C, Schweitzer JA, Williams DL. Scavenger receptor-A (CD204): A two-edged sword in health and disease. Critical Reviews™ in Immunology. 2014;34(3):241-261.

Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters. 2009;9(3):1007-1010.

Zhao S, Zhang H, Xiao J, Miyakawa T, Li Q, Ni Z. Advances in nanoparticle-mediated delivery of CRISPR/Cas9 for plant genome editing. Transgenic Research. 2020;29(3):387-403.

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications. 2017;8(1):1-5.

Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications. 2016;7(1):1-7.

Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Liu DR. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology. 2015;33(1):73-80.

Meghani NM, Barlow JW, Payne GF, Rao RR. CRISPR‐Cas technology in agricultural development and crop improvement. The CRISPR Journal. 2021;4(3):278-296.

Wolt JD, Wang K, Yang B. The regulatory status of genome‐edited crops. Plant Biotechnology Journal. 2016;14(2):510-518.

Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ. Benefits of genome-edited crops: Expert opinion. Transgenic Research. 2019;28(2):247-256.

Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. Plants developed by new genetic modification techniques—Comparison of existing regulatory frameworks in the EU and non-EU countries. Frontiers in Bioengineering and Biotechnology. 2019;7:26.

Gelvin SB. Agrobacterium-mediated plant transformation: The biology behind the gene-jockeying tool. Microbiology and Molecular Biology Reviews. 2003;67(1):16-37.

Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology. 2018;36(9):882-897.

Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Zeng Z. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants. 2017;3(12):956-964.

Vijayalakshmi U, Shouche YS, Krishnaraj RN. Recent advancements in nanoparticle‐mediated plant transformation. Journal of Applied Microbiology. 2020;129(6):1444-1460.

Huang S, Yao J, Ma H, Zhang S, Lv J, Dai L. Efficient transformation of Scutellaria baicalensis Georgi using magnetic nanoparticles as the carrier of the plasmid vector. Horticulture, Environment, and Biotechnology. 2020;61(5):923-929.

Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Science Advances. 2020;6(26):eaaz0495.

Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Landry MP. DNA nanostructures coordinate gene silencing in mature plants. Proceedings of the National Academy of Sciences. 2020;117(2):953-960.

Torney F, Trewyn BG, Lin VSY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology. 2007;2(5):295-300.

Li J, Hu H, Wang C, Guo X, Xu D, Qian Q, Ma Y. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Molecular Plant. 2021;14(9):1463-1476.

Jiang L, Ding L, He B, Shen J, Xu Z, Yin M, Zhang X. Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale. 2014;6(17):9965-9969.

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Landry MP. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology. 2019;14(5):456-464.

Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Strano MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology. 2019;14(5):447-455.

Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiology. 2020;184(2):647-657.

Lew TTS, Park M, Cui J, Strano MS. Plant nanobionic sensors for arsenic detection. Advanced Materials. 2021;33(1):2005683.

Chen Q, Ma Z, Wang X, Li J, Zhang J, Liu R, Liu H. Functionalized upconversion nanoparticles for targeted gene delivery and imaging-guided gene editing. ACS Applied Materials & Interfaces. 2021;13(7):8550-8561.

Yu J, Yin W, Zheng X, Tian G, Jing X, Jiang T. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics. 2015;5(9):931-945.

Chariou PL, Ortega‐Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678-2701.

Yan S, Hu Q, Li J, Chao Z, Cai C, Yin M, Zhang W. Gold nanorods as nanocarriers to delivery genome editing agent for plant genetic transformation. Small. 2021;17(32):2101095.

Liu B, Wang X, Yang X, Sun R, Xu Z. Multi-functional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics. 2021;11(6):2891-2923.

Lei C, Xu R. Peng X, Liu P, Zheng M, Li P, Jiang J. Mesoporous silica nanoparticles for delivering CRISPR/Cas genome-editing machinery in plants. Science China Materials. 2021;64(10):2679-2689.

Yu J, Yin W, Zheng X, Tian G, Jing X, Jiang T. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics. 2015;5(9):931-945.

Chariou PL, Ortega‐Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678-2701.

Yan S, Hu Q, Li J, Chao Z, Cai C, Yin M, Zhang W. Gold nanorods as nanocarriers to delivery genome editing agent for plant genetic transformation. Small. 2021;17(32):2101095.

Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiology. 2020;184(2):647-657.

Duran N, Marcato PD. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. International Journal of Food Science & Technology. 2013;48(6):1127-1134.

Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology. 2012;94(2):287-293.

Grillo R, Abhilash PC, Fraceto LF. Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology. 2016;16(1):1231-1234.

Gelvin SB. Agrobacterium-mediated plant transformation: The biology behind the "gene-jockeying" tool. Microbiology and Molecular Biology Reviews. 2003;67(1):16-37.

Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. International Journal of Pharmaceutics. 2019;565:509-522.

Ingle AP, Seabra AB, Duran N, Rai M. Nanobiotechnology in agriculture: Indices of potential benefit and risk assessment. Nanotechnology in Food and Agriculture. 2014;233-243.

Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry. 2020;68(7):1935-1947.

Schwartz SH, Hendrix B, Hoffer P, Sanders RA, Zheng W. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiology. 2020;184(2):647-657.

Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. Journal of the Science of Food and Agriculture. 2018;98(3):849-864.

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules. 2019;127:126-135.

Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano. 2019;6(1):41-59.

Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Scientific Reports. 2017;7(1):1-14.

Shukla PK, Misra P, Kole C. Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. Plant Nanotechnology. 2016:183-218.

Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J. Nano-fertilizers and their smart delivery system. Nanotechnologies in Food and Agriculture. 2015;81-101.

Khan MR, Rizvi TF. Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal. 2014;13(3):214-231.

Ashkavand P, Tabatabaei M, Zarrini G, Ajdari Z, Razmjou A. Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Journal of Integrative Agriculture. 2018;17(1):173-181.

Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC. Strategic role of nanotechnology in fertilizers: Potential and limitations. Nanotechnologies in Food and Agriculture. 2015;25-67.

Siddiqui MH, Al-Whaibi MH. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences. 2014;21(1):13-17.

Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Management Science: Formerly Pesticide Science. 2007;63(3):241-246.

Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience. 2014;4(5):577-591.

Zaytseva O, Neumann G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture. 2016;3(1):1-26.

Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF. Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials. 2014;268:207-215.

Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Sahi SV. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry. 2017;110:118-127.

Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules. 2019;24(14):2558.

Lira-Saldivar RH, Méndez-Argüello B, Vera-Reyes I. Nanoparticulated nutrients and other technological advances for sustainable agriculture. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture. 2018:1-34.

Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Journal of Hazardous Materials. 2015;297:173-182.

Guan H, Chi D, Yu J, Li H. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Protection. 2010;29(9):942-946.

Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoparticulate material delivery to plants. Plant Science. 2010;179(3):154-163.

Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu (OH) 2 nanopesticides: oxidative stress response and detoxification mechanisms. Environmental Science & Technology. 2016;50(17):9697-9707.

Wang P, Lombi E, Zhao FJ, Kopittke PM. Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science. 2016;21(8):699-712.

Petosa AR, Rajput F, Selvam O, Öhl C, Tufenkji N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research. 2017;111:10-17.

Rai V, Acharya S, Dey N. Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology. 2012;3(02):315.

Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnology. 2019;14(6):541-553.

Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, Wilkinson KJ. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food. 2020;1(7):416-425.

Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have?. Frontiers in Environmental Science. 2016;4:20.

Pandey G. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology & Innovation. 2018;11:299-307.

Servin AD, White JC. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. 2016;1:9-12.

Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R, White JC. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering. 2018;6(11):14847-14856.

Arruda SCC, Silva ALD, Galazzi RM. Azevedo RA, Arruda MAZ. Nanoparticles applied to plant science: a review. Talanta. 2015;131:693-705.

de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances. 2014;32(8):1550-1561.

Derosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nature Nanotechnology. 2010;5(2):91-91.

Abdel-Aziz HMM, Hasaneen MNA, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research. 2016;14(1):0902.

Panpatte DG, Jhala YK, Shelat HN, Vyas RV. Nanoparticles: the next generation technology for sustainable agriculture. In Microbial inoculants in sustainable agricultural productivity. 2016;289-300. Springer, New Delhi.

Priyanka N, Venkatachalam P. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016;7(4):045018.

Shang Y, Hasan M, Ahammed GJ, Li M. Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 2019;24(14):2558.

Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiology and Biochemistry. 2017;110:210-225.

Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Gardea-Torresdey JL. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiology and Biochemistry. 2017;110:236-264.

Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry. 2011;59(8):3485-3498.

Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella Jr MF, Kim B, Bernhardt ES. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PloS one. 2013;8(2):e57189.

Judy JD, McNear Jr DH, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Unrine JM. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environmental Science & Technology. 2015;49(14):8751-8758.

Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety. 2013;88:48-54.

Pallavi, Mehta CM, Srivastava R, Arora S, Sharma AK. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6(2):1-10.

Disfani MN, Mikhak A, Kassaee MZ, Maghari A. Effects of nano Fe/SiO 2 fertilizers on germination and growth of barley and maize. Archives of Agronomy and Soil Science. 2017;63(6):817-826.

Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 2012;35(6):905-927.

Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-3227.

Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology. 2009;43(24):9473-9479.

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhu S. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science. 2016;7:815.

Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Samia ACS. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. International Journal of Molecular Sciences. 2015;16(10):23630-23650.

Sweet MJ, Singleton I. Soil contamination with silver nanoparticles reduces bishop pine growth and ectomycorrhizal diversity on pine roots. Journal of Nanoparticle Research. 2015;17(11):1-13.

Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology. 2013;47(2):1082-1090.

Abdel-Aziz HM, Hasaneen MN, Omer AM. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research. 2016;14(1):0902.

Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Scientia Horticulturae. 2014;175:1-8.

Sarlak N, Taherifar A, Salehi F. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. Journal of Agricultural and Food Chemistry. 2014;62(21):4833-4838.

Panpatte DG, Jhala YK, Shelat HN, Vyas RV. Nanoparticles: The next generation technology for sustainable agriculture. In Microbial inoculants in sustainable agricultural productivity (pp. 289-300). Springer, New Delhi; 2016.

Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF. Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials. 2014;268:207-215.

Ragaei M, Sabry AKH. Nanotechnology for insect pest control. International Journal of Science, Environment and Technology. 2014;3(2):528-545.

Elmer WH, White JC. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano. 2016;3(5): 1072-1079.

Hayles J, Johnson L, Worthley C, Losic D. Nanopesticides: A review of current research and perspectives. New Pesticides and Soil Sensors. 2017;193-225.

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Landry MP. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology. 2019;14(5):456-464.

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications. 2017;8(1):1-5.

Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Zeng Z. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants. 2017;3(12):956-964.

Ashkavand P, Tabatabaei M, Zarrini G, Ajdari Z, Razmjou A. Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Journal of Integrative Agriculture. 2018;17(1):173-181.

Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: a review. Molecules. 2019;24(14):2558.

Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano. 2019;6(1): 41-59.

Borgatta J, Ma C, Hudson-Smith N, Elmer W, Plaza Pérez CD, De La Torre-Roche R, White JC. Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering. 2018;6(11):14847-14856.

Pandey G. Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environmental Technology & Innovation. 2018;11:299-307.

Dimkpa CO, Bindraban PS. Fortification of micronutrients for efficient agronomic production: A review. Agronomy for Sustainable Development. 2016;36(1):7.

Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu (OH) 2 nanopesticides: Oxidative stress response and detoxification mechanisms. Environmental Science & Technology. 2016;50(17):9697-9707.

Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Samia ACS. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. International Journal of Molecular Sciences. 2015;16(10):23630-23650.

Ashkavand P, Tabatabaei M, Zarrini G, Ajdari Z, Razmjou A. Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Journal of Integrative Agriculture2018;17(1):173-181.

de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF. Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances2014;32(8):1550-1561.

Malandrakis AA, Kavroulakis N, Chrysikopoulos CV, Batzipetrou P. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of The Total Environment. 2021;794:148377.

Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF. Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials. 2014;268:207-215.

Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Science Advances. 2020;6(26):eaaz0495.

Lei C, Xu R, Peng X, Liu P, Zheng M, Li P, Jiang J. Mesoporous silica nanoparticles for delivering CRISPR/Cas genome-editing machinery in plants. Science China Materials. 2021;64(10):2679-2689.

Yan S., Hu Q, Li J, Chao Z, Cai C, Yin M, Zhang W. Gold nanorods as nanocarriers to delivery genome editing agent for plant genetic transformation. Small. 2021;17(32):2101095.

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules. 2019;127:126-135.

Huang S, Yao J, Ma H, Zhang S, Lv J, Dai L. Efficient transformation of Scutellaria baicalensis Georgi using magnetic nanoparticles as the carrier of the plasmid vector. Horticulture, Environment, and Biotechnology. 2020;61(5):923-929.

Romero C, Ramos P, Costa C, Teixeira MC. Graphene based soil moisture sensor. In 2013 IEEE SENSORS (pp. 1-4). IEEE; 2013.

Qu F, Zhu L, Yang M. Quantum dot-based sensor for multiplexed detection of heavy metal ions in soil. Analytica Chimica Acta. 2020;1133:66-75.

Chen Y, Li J, Wang H. Zinc oxide nanoparticle-based sensor for dehydrogenase activity detection in soil. Sensors. 2020;20(17):4867.

Servin AD, White JC. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. 2016;1:9-12.

Judy JD, McNear Jr DH, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Unrine JM. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environmental Science & Technology. 2015;49(14):8751-8758.

Pallavi Mehta CM, Srivastava R, Arora S, Sharma AK. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6(2):1-10.

Disfani MN, Mikhak A, Kassaee MZ, Maghari A. Effects of nano Fe/SiO 2 fertilizers on germination and growth of barley and maize. Archives of Agronomy and Soil Science. 2017;63(6):817-826.

Wang X, Liu X, Chen J, Han H, Yuan Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon. 2014;68:798-806.

Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. Nanotechnology for plant disease management. Agronomy. 2018;8(12):285.

Hayles J, Johnson L, Worthley C, Losic D. Nanopesticides: A review of current research and perspectives. New Pesticides and Soil Sensors. 2017;193-225.

Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Science Advances. 2020;6(26):eaaz0495.

Meghani NM, Barlow JW, Payne GF, Rao RR. CRISPR‐Cas technology in agricultural development and crop improvement. The CRISPR Journal. 2021;4(3):278-296.

Vijayalakshmi U, Shouche YS, Krishnaraj RN. Recent advancements in nanoparticle‐mediated plant transformation. Journal of Applied Microbiology. 2020;129(6):1444-1460.

Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition. 2012;35(6):905-927.

Guan H, Chi D, Yu J, Li H. Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Protection. 2010;29(9):942-946.

Chen J, Dou R, Yang Z, You T, Gao X, Wang L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry. 2018;130:604-612.

Chariou PL, Ortega‐Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678-2701.

Chariou PL, Ortega‐Rivera OA, Steinmetz NF. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano. 2020;14(3):2678-2701.

Li Z, Zhang Y, Luo Z, He J, Liu X, Liu F, Hu J. Gold nanoparticles promote flowering, fruit set, and yield of tomato plants under heat stress. ACS Applied Materials & Interfaces. 2021;13(24):28295-28307.

Servin AD, White JC. Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. 2016;1:9-12.

Hossain Z, Mustafa G, Komatsu S. Plant responses to nanoparticle stress. International Journal of Molecular Sciences. 2015;16(11):26644-26653.

Judy JD, McNear Jr DH, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Unrine JM. Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environmental Science & Technology. 2015;49(14):8751-8758.

Disfani MN, Mikhak A, Kassaee MZ, Maghari A. Effects of nano Fe/SiO 2 fertilizers on germination and growth of barley and maize. Archives of Agronomy and Soil Science. 2017;63(6):817-826.

Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology. 2017;8:1014.

Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: Which innovation potential does it have?. Frontiers in Environmental Science. 2016;4: 20.

Lv J, Christie P, Zhang S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano. 2019;6(1): 41-59.

Iavicoli I, Leso V, Beezhold DH, Shvedova AA. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology. 2017;329: 96-111.

Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnology. 2019;14(6):541-553.

Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR, Wilkinson KJ. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food. 2020;1(7):416-425.

Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology. 2012;94(2):287-293.

Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ. Benefits of genome-edited crops: Expert opinion. Transgenic Research. 2019;28(2):247-256.