Journal of Experimental Agriculture International

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 44 [Issue 9]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Bias Correction of Climate Model Outputs Using IMD Srinagar Data for Climate Change Impact Assessment

  • Syed Rouhullah Ali
  • Junaid N. Khan
  • Rohitashw Kumar
  • Farooq Ahmad Lone
  • Shakeel Ahmad Mir
  • Imran Khan

Journal of Experimental Agriculture International, Page 102-107
DOI: 10.9734/jeai/2022/v44i930854
Published: 31 May 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Regional climate models (RCMs) give more credible findings for a regional climate change impact assessment, but they still have a bias that must be rectified. Two correction functions using two methods, the modified difference approach and linear scaling method, were utilized for local bias correction of Tmax, Tmin, and precipitation data at monthly scales and validated to minimize the bias between modelled (HAD GEM2-ES-GCM) and observed climate data at IMD Srinagar Station, J&K. Linear scaling technique at monthly time scale for Tmax, Tmin, and precipitation was superior to modified difference approach for bias correction of modelled data to close it to observed data.


Keywords:
  • Bias correction
  • Central Kashmir
  • GCM
  • RCM
  • modified difference approach
  • linear scaling method
  • Full Article – PDF
  • Review History

How to Cite

Ali, S. R., Khan, J. N., Kumar, R., Lone, F. A., Mir, S. A., & Khan, I. (2022). Bias Correction of Climate Model Outputs Using IMD Srinagar Data for Climate Change Impact Assessment. Journal of Experimental Agriculture International, 44(9), 102-107. https://doi.org/10.9734/jeai/2022/v44i930854
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Maurer EP, Hidalgo HG. Utility of daily vs. monthly large scale climate data: An intercomparison of two statistical downscaling methods. J. Hydrol. Earth Syst. Sci. 2008;12:551-63.

Chandniha SK, Kansal ML. Rainfall estimation using multiple regression based statistical downscaling for Piperiya watershed in Chhattisgarh. J. Agrometeorol. 2016;18(1):106-112.

Meena PK, Khare D, Nema MK. Construction the downscale precipitation using ANN model over Kshipra river basin, Madhya Pradesh. J. Agrometeorol. 2016; 18(1):113-119.

Fowler HJ, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int J. Climatol. 2007;27(12): 1547-78.

Wilks DS. Realizations of daily weather in forecast seasonal climate. J. Hydro. Meteorol. 2002;3:195- 207.

Hansen JW, Ines AVM. Stochastic disaggregation of monthly rainfall data for crop simulation studies. J. Agri. For Meteorol. 2005;131:233-46.

Feddersen H, Andersen U. A method for statistical downscaling of seasonal ensemble predictions. Tellus. 2005;57: 398-408.

Ali SR, Khan JN. Bias correction of climate model outputs for climate change impact assessment in Central Kashmir. Indian Journal of Ecology. 2021;48(1):281- 286.

Dar MUD, Aggarwal R, Kaur S. Comparing bias correction methods in downscaling meteorological variables for climate change impact study in Ludhiana, Punjab. Journal of Agrometeorology. 2018; 20(2):126-130.

Leander R, Buishand T. Resampling of regional climate model output for the simulation of extreme river flows. J Hydro. 2007;332:487-96.

Lenderink G, Buishand A, Van Deursen W. Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. J. Hydrol. Earth Syst. Sci. 2007;11:1145-59.
  • Abstract View: 70 times
    PDF Download: 14 times

Download Statistics

  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Experimental Agriculture International. All rights reserved.